9 research outputs found

    Polysaccharide-Based Hydrogel from Seeds of Artemisia vulgaris: Extraction Optimization by Box-Behnken Design, pH-Responsiveness, and Sustained Drug Release

    Get PDF
    The current research work focuses on the extraction and optimization of the hydrogel (AVM) from the seeds of Artemisia vulgaris using Box–Behnken design-response surface methodology (BBD-RSM). The AVM was obtained through a hot water extraction process. The influence of different factors, including pH (U = 4 to 10), temperature (V = 25 to 110 °C), seed/water ratio, i.e., S/W ratio (W = 1/10 to 1/70 w/v), and seed/water contact time, i.e., S/W time (X = 1 to 12 h) on the yield of AVM was evaluated. The p-value for the analysis of variance (ANOVA) was found to be \u3c0.001, indicating that the yield of AVM mainly depended on the abovementioned factors. The highest yield of AVM, i.e., 15.86%, was found at a pH of 7.12, temperature of 80.04 °C, S/W ratio of 1/33.24 w/v, and S/W time of 8.73 h according to Design-Expert Software. The study of the pH-responsive behavior of AVM in tablet form (formulation AVT3) revealed that AVM is a pH-responsive material with significantly high swelling at pH 7.4. However, less swelling was witnessed at pH 1.2. Moreover, AVM was found to be a sustained release material for esomeprazole at pH 7.4 for 12 h. The drug release from AVT3 was according to the super case-II transport mechanism and zero-order kinetics

    An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer

    No full text
    Lung and colon cancers are among the leading causes of human mortality and morbidity. Early diagnostic work up of these diseases include radiography, ultrasound, magnetic resonance imaging, and computed tomography. Certain blood tumor markers for carcinoma lung and colon also aid in the diagnosis. Despite the lab and diagnostic imaging, histopathology remains the gold standard, which provides cell-level images of tissue under examination. To read these images, a histopathologist spends a large amount of time. Furthermore, using conventional diagnostic methods involve high-end equipment as well. This leads to limited number of patients getting final diagnosis and early treatment. In addition, there are chances of inter-observer errors. In recent years, deep learning has shown promising results in the medical field. This has helped in early diagnosis and treatment according to severity of disease. With the help of EffcientNetV2 models that have been cross-validated and tested fivefold, we propose an automated method for detecting lung (lung adenocarcinoma, lung benign, and lung squamous cell carcinoma) and colon (colon adenocarcinoma and colon benign) cancer subtypes from LC25000 histopathology images. A state-of-the-art deep learning architecture based on the principles of compound scaling and progressive learning, EffcientNetV2 large, medium, and small models. An accuracy of 99.97%, AUC of 99.99%, F1-score of 99.97%, balanced accuracy of 99.97%, and Matthew’s correlation coefficient of 99.96% were obtained on the test set using the EffcientNetV2-L model for the 5-class classification of lung and colon cancers, outperforming the existing methods. Using gradCAM, we created visual saliency maps to precisely locate the vital regions in the histopathology images from the test set where the models put more attention during cancer subtype predictions. This visual saliency maps may potentially assist pathologists to design better treatment strategies. Therefore, it is possible to use the proposed pipeline in clinical settings for fully automated lung and colon cancer detection from histopathology images with explainability

    Concurrent Session 2D. TWAIL and Economic Lessons: Pedagogy to Confront Material Exclusions

    No full text
    Explores how to apply TWAIL teaching methods to economic international law subjects. Participants examine how TWAIL’s anti-subordination focus is relevant to recent global economic challenges. Presenters focus on specific legal regimes, such as climate change, international trade, and neo-liberal policies. They explain how international law creates new divisions and that these distinctions are continually re-formulated. Examples include the increasing foreign relations influence of Brazil, China, Russia, India, and South Africa; trade rules favoring industrial or high-tech states; the diminishing divide between domestic and foreign struggles; and the viability of globalization after the 2008 economic crisis

    Crystal violet decolorization assay for rapid detection of multidrug-resistant Mycobacterium tuberculosis isolates: A multicenter study

    Get PDF
    Background: Effective control of tuberculosis is achieved by early diagnosis and drug susceptibility testing for initiation of appropriate treatment. The performance of crystal violet decolorization assay (CVDA) for susceptibility testing of Mycobacterium tuberculosis to isoniazid (INH) and rifampicin (RIF) was compared in a multicenter study. Methods: Seventy-two M. tuberculosis isolates were tested in two phases by CVDA. Results: In Phase I, the specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), and agreement for INH were 100%, respectively. Specificity, sensitivity, PPV, NPV, and agreement for RIF were 98.2%, 100%, 94.1%, 100%, and 98.6%, respectively. In Phase II, specificity, sensitivity, PPV, NPV, and agreement were 98%, 100%, 95.4%, 100%, and 98.6% for INH, respectively. Specificity, sensitivity, PPV, NPV, and agreement for RIF were 96.3%, 88.2%, 88.2%, 96.3%, and 94.4%, respectively. Results in the study were obtained on average 10.9 ± 3.1 days in Phase I and 9.8 ± 2.2 days in Phase II. Conclusion: CVDA can be performed for drug susceptibility testing in developed and developing countries. In addition, further studies with larger sample size are needed for evaluation of this method

    Phosphoric Acid Activated Carbon from Melia azedarach Waste Sawdust for Adsorptive Removal of Reactive Orange 16: Equilibrium Modelling and Thermodynamic Analysis

    No full text
    Waste wood biomass as precursor for manufacturing activated carbon (AC) can provide a solution to ever increasing global water quality concerns. In our current work, Melia azedarach derived phosphoric acid-treated AC (MA-AC400) was manufactured at a laboratory scale. This novel MA-AC400 was tested for RO16 dye removal performance as a function of contact time, adsorbent dosage, pH, temperature and initial dye concentration in a batch scale arrangement. MA-AC400 was characterized via scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering (DLS) and fluorescence spectroscopy. MA-AC400 is characterized as mesoporous with BET surface area of 293.13 m2 g−1 and average pore width of 20.33 Å. pHPZC and Boehm titration confirm the acidic surface charges with dominance of phenolic functional groups. The average DLS particle size of MA-AC400 was found in the narrow range of 0.12 to 0.30 µm and this polydispersity was confirmed with multiple excitation fluorescence wavelengths. MA-AC400 showed equilibrium adsorption efficiency of 97.8% for RO16 dye at its initial concentration of 30 mg L−1 and adsorbent dose of 1 g L−1. Thermodynamic study endorsed the spontaneous, favorable, irreversible and exothermic process for RO16 adsorption onto MA-AC400. Equilibrium adsorption data was better explained by Langmuir with high goodness of fit (R2, 0.9964) and this fitness was endorsed with lower error functions. The kinetics data was found well fitted to pseudo-second order (PSO), and intra-particle diffusion kinetic models. Increasing diffusion constant values confirm the intraparticle diffusion at higher RO16 initial concentration and reverse was true for PSO chemisorption kinetics. MA-AC400 exhibited low desorption with studied eluents and its cost was calculated to be $8.36/kg

    Synthesis and Characterization of Fe-TiO<sub>2</sub> Nanomaterial: Performance Evaluation for RB5 Decolorization and In Vitro Antibacterial Studies

    No full text
    A photocatalytic system for decolorization of double azo reactive black 5 (RB5) dye and water disinfection of E. coli was developed. Sol gel method was employed for the synthesis of Fe-TiO2 photocatalysts and were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and Brunauer–Emmett–Teller (BET) analysis. Results showed that photocatalytic efficiency was greatly influenced by 0.1 weight percent iron loading and 300 °C calcination temperature. The optimized reaction parameters were found to be the ambient temperature, working solution pH 6.2 and 1 mg g−1 dose to completely decolorize RB5. The isotherm studies showed that RB5 adsorption by Fe-TiO2 followed the Langmuir isotherm with maximum adsorption capacity of 42.7 mg g−1 and Kads 0.0079 L mg−1. Under illumination, the modified photocatalytic material had higher decolorization efficiency as compared to unmodified photocatalyst. Kinetic studies of the modified material under visible light irradiation indicated the reaction followed the pseudo-first-order kinetics. The illumination reaction followed the Langmuir-Hinshelwood (L-H) model as the rate of dye decolorization increased with an incremental increase in dye concentration. The L-H constant Kc was 1.5542 mg L–1∙h–1 while Kads was found 0.1317 L mg–1. The best photocatalyst showed prominent percent reduction of E. coli in 120 min. Finally, 0.1Fe-TiO2-300 could be an efficient photocatalyst and can provide a composite solution for RB5 decolorization and bacterial strain inhibition

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)

    Contributory presentations/posters

    No full text
    corecore