10 research outputs found
Purification and Characterization of AsES Protein A Subtilisin Secreted by Acremonium Strictum is a Novel Plant Defense Elicitor.
In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2̇̄) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity
Development of PSP1: A Biostimulant Based on the Elicitor AsES for Disease Management in Monocot and Dicot Crops
In this work we present a novel biostimulant for sustainable crop disease management named PSP1. PSP1 is based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen Acremonium strictum. Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a viral strain of Colletotrichum acutatum. Fermentation batches were shown to reduce anthracnose development by 30 to 60% as compared to infected non-treated plants. Product formulation was shown to be stable for 6 months when stored at temperatures up to 45°C and toxicological tests showed that PSP1 was harmless to beneficial organisms and non-toxic to mammalian species at concentrations 50 times higher than those used in plant experiments. Furthermore, disease protection studies using dilutions of PSP1 indicated that there is a minimum threshold protease activity needed to induce pathogen defense in strawberry and that this induction effect is dose-independent. A significant characteristic of PSP1 is its broad-range protection against different diseases in various crop species. In soybean, PSP1 reduced the symptomatology by 70% of Corynespora cassiicola, etiological agent of the target spot. This protection effect was similar to the commercial inducer BION 500 WG based on BTH, and both products were shown to induce an oxidative burst and up-regulated PR1-gene expression in soybean. Furthermore, a double PSP1-treatment on greenhouse-grown sugarcane plants provided protection against bacterial red stripe disease caused by Acidovorax avenae and a double foliar application of PSP1 on field-grown wheat plants significantly increased resistance against Fusarium graminearum, causal agent of head blight disease, manifested mainly in an increased seed germination rate. In summary, these disease protection studies demonstrated an effective control against both bacterial and fungal pathogens in both monocot and dicot crop species, which together with its low production cost, effectiveness at low concentrations, long shelf-life, tolerance to high temperatures, harmlessness to non-target organisms and simple handling and application, make PSP1 a very promising candidate for effective and sustainable disease management in many crop species.Fil: Chalfoun, Nadia Regina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Sandra B. Durman. Bayer S.A., Argentina – Crop Science LATAM 2, Crop Science Research, Buenos Aires; ArgentinaFil: Budeguer, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Caro, María del Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Romina P. Bertani. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Pia d.l.A. di-Peto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino;; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Sebastian A. Stenglein. Laboratorio de Biología Funcional y Biotecnología, Universidad Nacional del Centro de la Provincia de Buenos Aires-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires and Instituto de Investigaciones en Biodiversidad y Biotecnología – Consejo Nacional de Investigaciones Científicas y Técnicas, Azul; ArgentinaFil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Enrique R. Moretti. Annuit S.a; ArgentinaFil: Juan C. Díaz Ricci. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Bjorn Welin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Estación Experimental Agroindustrial Obispo Colombres; Argentin
Elicitor-Based Biostimulant PSP1 Protects Soybean Against Late Season Diseases in Field Trials
Currently, fungicide application in soybean production accounts for an important amount of global pesticide use, and it is therefore most desirable to find new healthier and more environmental friendly alternatives for the phytosanitary management in this crop. In this study, we present convincing evidence for effective induction of disease protection by the agricultural biostimulant PSP1, a formulation based on the plant-defense eliciting activity of the fungal protease AsES (Acremonium strictum elicitor subtilisin), in multiple field trials in Argentina.PSP1 was shown to combine well with commercial spray adjuvants, an insecticide, a herbicide and fungicides used in Argentinian soybean production without losing any defense-inducing activity, indicating an easy and efficient adaptability to conventional soybean production and disease management in the region. Results from multiple soybean field trials conducted with different elite genotypes at several locations during two consecutive growing seasons, showed that PSP1 is able to induce an enhanced pathogen defense which effectively reduced late season disease (LSD) development in field-grown soybean. This defense response seems to be broad-range as disease development was clearly reduced for at least three different fungi causing LSDs in soybean (Septoria glycines, Cercospora kikuchii and Cercospora sojina). It was noteworthy that application of PSP1 in soybean alone gave a similar protection against fungal diseases as compared to the commercial fungicides included in the field trials and that PSP1 applied together with a fungicide at reproductive stages enhanced disease protection and significantly increased grain yields.PSP1 is the first example of an elicitor-based strategy in order to efficiently control multiple fungal diseases under field conditions in the soybean crop. These results show the feasibility of using induced resistance products as complements or even full-good replacements to currently used chemical pesticides, fulfilling a role as important components of a more sustainable crop disease management system
Data_Sheet_1_Elicitor-Based Biostimulant PSP1 Protects Soybean Against Late Season Diseases in Field Trials.docx
<p>Currently, fungicide application in soybean production accounts for an important amount of global pesticide use, and it is therefore most desirable to find new healthier and more environmental friendly alternatives for the phytosanitary management in this crop. In this study, we present convincing evidence for effective induction of disease protection by the agricultural biostimulant PSP1, a formulation based on the plant-defense eliciting activity of the fungal protease AsES (Acremonium strictum elicitor subtilisin), in multiple field trials in Argentina.</p><p>PSP1 was shown to combine well with commercial spray adjuvants, an insecticide, a herbicide and fungicides used in Argentinian soybean production without losing any defense-inducing activity, indicating an easy and efficient adaptability to conventional soybean production and disease management in the region. Results from multiple soybean field trials conducted with different elite genotypes at several locations during two consecutive growing seasons, showed that PSP1 is able to induce an enhanced pathogen defense which effectively reduced late season disease (LSD) development in field-grown soybean. This defense response seems to be broad-range as disease development was clearly reduced for at least three different fungi causing LSDs in soybean (Septoria glycines, Cercospora kikuchii and Cercospora sojina). It was noteworthy that application of PSP1 in soybean alone gave a similar protection against fungal diseases as compared to the commercial fungicides included in the field trials and that PSP1 applied together with a fungicide at reproductive stages enhanced disease protection and significantly increased grain yields.</p><p>PSP1 is the first example of an elicitor-based strategy in order to efficiently control multiple fungal diseases under field conditions in the soybean crop. These results show the feasibility of using induced resistance products as complements or even full-good replacements to currently used chemical pesticides, fulfilling a role as important components of a more sustainable crop disease management system.</p
Manejo fitosanitario de la soja con el bioestimulante PSP1, inductor de la defensa vegeta
La expansión de las áreas de producción de soja en combinación con el manejo sin labranza para mejorar la conservación del suelo han tenido un fuerte impactoen los ecosistemas agrícolas causando un cambio sustancial en la prevalencia, frecuencia e intensidad de las enfermedades de soja en Argentina. Actualmente, debido a la falta de variedades con resistencia genética contra la mayoría de las enfermedades de fin de ciclo, la principal estrategia de control fitosanitario consiste en la aplicación de fungicidas foliares en los estadios reproductivos del cultivo. Si bien los fungicidas sintéticos han contribuido significativamente al aumento considerable de la producción agrícola mundial en las últimas décadas, el uso excesivo de estos productos químicos ha planteado preocupaciones no solo por el impacto negativo en la salud humana y animal y en el medioambiente, sino también por el drástico aumento en los costos de producción. el cultivo de la soja (Lenssen,2013). En consecuencia,existe una demanda creciente,tanto de la sociedad como delos productores, de obtenerestrategias alternativas que seanmás baratas y más amigables conel medioambienteFil: Chalfoun, Nadia Regina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Toulet, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Di Peto, Pía de Los Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Grellet Bournonville, Carlos Froilan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: de Lisi, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Rezvnikov, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Gonzales Valentin, Elizabeth. Itanoa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Sánchez, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Ledesma, F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Mamaní de Marchese, A.. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; ArgentinaFil: Filippone, María Paula. Universidad Nacional de Tucumán. Facultad de Agronomía y Zootecnia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Moretti, Enrique R.. Annuit S.a; ArgentinaFil: Welin, Bjorn. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin
Table_2_The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice.doc
<p>Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.</p
Image_4_The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice.pdf
<p>Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.</p
Image_3_The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice.pdf
<p>Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.</p
Image_1_The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice.pdf
<p>Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.</p
Data_Sheet_1_Development of PSP1, a Biostimulant Based on the Elicitor AsES for Disease Management in Monocot and Dicot Crops.DOCX
<p>In this work, we present a novel biostimulant for sustainable crop disease management, PSP1, based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen Acremonium strictum. Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a virulent strain of Colletotrichum acutatum. Fermentation batches were shown to reduce anthracnose development by 30–60% as compared to infected non-treated plants. Product formulation was shown to be stable for 6 months when stored at temperatures up to 45°C and toxicological tests showed that PSP1 was harmless to beneficial organisms and non-toxic to mammalian species at concentrations 50 times higher than those used in plant experiments. Furthermore, disease protection studies using dilutions of PSP1 indicated that there is a minimum threshold protease activity needed to induce pathogen defense in strawberry and that this induction effect is dose-independent. A significant characteristic of PSP1 is its broad-range protection against different diseases in various crop species. In soybean, PSP1 reduced the symptomatology by 70% of Corynespora cassiicola, etiological agent of the target spot. This protection effect was similar to the commercial inducer BION 500 WG based on BTH, and both products were shown to induce an oxidative burst and up-regulated PR1-gene expression in soybean. Furthermore, a double PSP1-treatment on greenhouse-grown sugarcane plants provided protection against bacterial red stripe disease caused by Acidovorax avenae and a double foliar application of PSP1 on field-grown wheat plants significantly increased resistance against Fusarium graminearum, causal agent of head blight disease, manifested mainly in an increased seed germination rate. In summary, these disease protection studies demonstrated an effective control against both bacterial and fungal pathogens in both monocot and dicot crop species, which together with its low production cost, effectiveness at low concentrations, long shelf-life, tolerance to high temperatures, harmlessness to non-target organisms and simple handling and application, make PSP1 a very promising candidate for effective and sustainable disease management in many crop species.</p