40 research outputs found

    Substance P induces TNF-α and IL-6 production through NFκB in peritoneal mast cells

    Get PDF
    AbstractThe neuropeptide Substance P (SP) is an important mediator of neuroimmunomodulatory activity. The aim of this study is to elucidate the mechanism used by SP to promote increased production of pro-inflammatory cytokines in fresh isolated rat peritoneal mast cells (rPMC). We have demonstrated that SP induces production of interleukin-6 (IL-6) in rPMC through the PI-3K, p42/44 and p38 MAP kinase pathways. SP-stimulated rPMC also exhibited an enhanced nuclear translocation of the nuclear factor κ B (NFκB). The tumour necrosis factor-α (TNF-α) and IL-6 production was completely inhibited by using (E)-4-hydroxynonenal (HNE) as an inhibitor of IκB-α and -β phosphorylation. Further, TNF-α and IL-6 expression was significantly inhibited by the oligonucleotides (ODNs) containing the NFκB element (NFκB decoy ODNs) but not by the scrambled control ODNs. These findings indicate that the NFκB pathway is involved in the transcriptional regulation of the TNF-α and IL-6 overexpression in primary SP-stimulated mast cells

    Oestradiol enhances in vitro the histamine release induced by embryonic histamine-releasing factor (EHRF) from uterine mast cells

    Get PDF
    The relationship between maternal hormones and factors secreted by the implanting embryo is still controversial. We have analysed the in-vitro effect of oestradiol and human embryo-derived histamine-releasing factor (EHRF) on histamine release from rat uterine mast cells. Rat uterine mast cells which were preincubated with oestradiol and then challenged with human EHRF gave histamine release values two- to threefold higher than those without preincubation. The enhancement observed was time- and temperature-dependent. A similar enhancement was obtained with human sensitized basophils but not with rat peritoneal mast cells. Oestradiol, used as a direct challenge, did not induce any histamine release from either rat uterine or peritoneal mast cells, or from human sensitized basophils. Oestradiol preincubation also enhanced the histamine release induced by anti-IgE but did not enhance the histamine release induced by substance P or compound 48/80, two secretagogues that are not mediated by IgE. Moreover, uterine fragments derived from rats at various oestrus phases, with different amounts of endogenous oestrogen, were challenged in vitro with EHRF. The release of histamine by mast cells was higher at the proestrus and preimplantation phases than at dioestrus. All these findings suggest that the interaction of oestradiol with rat uterine mast cells was capable of enhancing in vitro the histamine releasing effect of EHR

    Targeted therapy for hepatocellular carcinoma: novel agents on the horizon

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for 90% of primary liver cancers. In the last decade it has become one of the most frequently occurring tumors worldwide and is also considered to be the most lethal of the cancer systems, accounting for approximately one third of all malignancies

    Novel Combination of Sorafenib and Celecoxib Provides Synergistic Anti-Proliferative and Pro-Apoptotic Effects in Human Liver Cancer Cells

    Get PDF
    Molecular targeted therapy has shown promise as a treatment for advanced hepatocellular carcinoma (HCC). Sorafenib, a multikinase inhibitor, recently received FDA approval for the treatment of advanced HCC. However, although sorafenib is well tolerated, concern for its safety has been expressed. Celecoxib (Celebrex®) is a selective cyclooxygenase-2 (COX-2) inhibitor which exhibits antitumor effects in human HCC cells. The present study examined the interaction between celecoxib and sorafenib in two human liver tumor cell lines HepG2 and Huh7. Our data showed that each inhibitor alone reduced cell growth and the combination of celecoxib with sorafenib synergistically inhibited cell growth and increased apoptosis. To better understand the molecular mechanisms underlying the synergistic antitumor activity of the combination, we investigated the expression profile of the combination-treated liver cancer cell lines using microarray analysis. Combination treatment significantly altered expression levels of 1,986 and 2,483 transcripts in HepG2 and Huh7 cells, respectively. Genes functionally involved in cell death, signal transduction and regulation of transcription were predominantly up-regulated, while genes implicated in metabolism, cell-cycle control and DNA replication and repair were mainly down-regulated upon treatment. However, combination-treated HCC cell lines displayed specificity in the expression and activity of crucial factors involved in hepatocarcinogenesis. The altered expression of some of these genes was confirmed by semi-quantitative and quantitative RT-PCR and by Western blotting. Many novel genes emerged from our transcriptomic analyses, and further functional analyses may determine whether these genes can serve as potential molecular targets for more effective anti-HCC strategies

    Toxic mineral elements in Mytilus galloprovincialis from Sicilian coasts (Southern Italy)

    Get PDF
    We assessed the relationship between V, Cr, Mn, Hg, As, Cd, Sn, Sb and Pb concentrations in Mytilus galloprovincialis samples from the coasts of Sicily and the expression of metallothioneins. Toxic mineral elements assessment was carried out by A.A. Spectrometry and ICP-MS. The metallothioneins expression was performed by q-PCR method. Low metals' levels were found in the mussel samples examined, in comparison with what was reported in literature. The highest mean values of toxic mineral elements were found in Gela (Cr 0.178 ± 0.03 mg/Kg, Mn 4.325 ± 0.012 mg/Kg, As 3.706 ± 0.009 mg/Kg, Sn 0.148 ± 0.014 mg/Kg, Sb 0.009 ± 0.004 mg/Kg e Pb 0.364 ± 0.01 mg/Kg). Significant levels of Hg were found in samples from Catania (0.014 ± 0.005 mg/Kg). Only vanadium and lead concentrations showed significant differences between sampling areas (p < 0.05). Molecular analysis verified a basal expression of Mt1 and the absence of over-expression of Mt2, confirming the low mineral's concentrations found in the samples examined

    Macrophage Polarization: Learning to Manage It

    No full text
    To date, four reviews and seven experimental articles have been published in this Special Issue [...

    Interactions between Macrophages and Mast Cells in the Female Reproductive System

    No full text
    Mast cells (MCs) and macrophages (Mϕs) are innate immune cells that differentiate from early common myeloid precursors and reside in all body tissues. MCs have a unique capacity to neutralize/degrade toxic proteins, and they are hypothesized as being able to adopt two alternative polarization profiles, similar to Mϕs, with distinct or even opposite roles. Mϕs are very plastic phagocytic cells that are devoted to the elimination of senescent/anomalous endogenous entities (to maintain tissue homeostasis), and to the recognition and elimination of exogenous threats. They can adopt several functional phenotypes in response to microenvironmental cues, whose extreme profiles are the inflammatory/killing phenotype (M1) and the anti-inflammatory/healing phenotype (M2). The concomitant and abundant presence of these two cell types and the partial overlap of their defensive and homeostatic functions leads to the hypothesis that their crosstalk is necessary for the optimal coordination of their functions, both under physiological and pathological conditions. This review will examine the relationship between MCs and Mϕs in some situations of homeostatic regulation (menstrual cycle, embryo implantation), and in some inflammatory conditions in the same organs (endometriosis, preeclampsia), in order to appreciate the importance of their cross-regulation

    Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages.

    No full text
    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression
    corecore