12 research outputs found

    Combined species identification, genotyping, and drug resistance detection of mycobacterium tuberculosis cultures by mlpa on a bead-based array

    Get PDF
    The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool to characterise Mycobacterium tuberculosis. We used Multiplex Ligation-dependent Probe Amplification (MLPA) to screen for dispersed mutations, which can be successfully applied to Mycobacterium tuberculosis as was previously shown. Here we selected 47 discriminative and informative markers and designed MLPA probes accordingly to allow analysis with a liquid bead array and robust reader (Luminex MAGPIX technology). To validate the bead-based MLPA, we screened a panel of 88 selected strains, previously characterised by other methods with the developed multiplex assay using automated positive and negative calling. In total 3059 characteristics were screened and 3034 (99.2%) were consistent with previous molecular characterizations, of which 2056 (67.2%) were directly supported by other molecular methods, and 978 (32.0%) were consistent with but not directly supported by previous molecular characterizations. Results directly conflicting or inconsistent with previous methods, were obtained for 25 (0.8%) of the characteristics tested. Here we report the validation of the bead-based MLPA and demonstrate its potential to simultaneously identify a range of drug resistance markers, discriminate the species within the Mycobacterium tuberculosis complex, determine the genetic lineage and detect and identify the clinically most relevant non-tuberculous mycobacterial species. The detection of multiple genetic markers in clinically derived Mycobacterium tuberculosis strains with a multiplex assay could reduce the number of TB-dedicated screening methods needed for full characterization. Additionally, as a proportion of the markers screened are specific to certain Mycobacterium tuberculosis lineages each profile can be checked for internal consistency. Strain characterization can allow selection of appropriate treatment and thereby improve treatment outcome and patient management

    Two-Year Monitoring of Water Samples from Dam of Iskar and the Black Sea, Bulgaria, by Molecular Analysis: Focus on <i>Mycobacterium</i> spp

    Get PDF
    The coast of the Bulgarian Black Sea is a popular summer holiday destination. The Dam of Iskar is the largest artificial dam in Bulgaria, with a capacity of 675 million m3. It is the main source of tap water for the capital Sofia and for irrigating the surrounding valley. There is a close relationship between the quality of aquatic ecosystems and human health as many infections are waterborne. Rapid molecular methods for the analysis of highly pathogenic bacteria have been developed for monitoring quality. Mycobacterial species can be isolated from waste, surface, recreational, ground and tap waters and human pathogenicity of nontuberculose mycobacteria (NTM) is well recognized. The objective of our study was to perform molecular analysis for key-pathogens, with a focus on mycobacteria, in water samples collected from the Black Sea and the Dam of Iskar. In a two year period, 38 water samples were collected—24 from the Dam of Iskar and 14 from the Black Sea coastal zone. Fifty liter water samples were concentrated by ultrafiltration. Molecular analysis for 15 pathogens, including all species of genus Mycobacterium was performed. Our results showed presence of Vibrio spp. in the Black Sea. Rotavirus A was also identified in four samples from the Dam of Iskar. Toxigenic Escherichia coli was present in both locations, based on markers for stx1 and stx2 genes. No detectable amounts of Cryptosporidium were detected in either location using immunomagnetic separation and fluorescence microscopy. Furthermore, mass spectrometry analyses did not detect key cyanobacterial toxins. On the basis of the results obtained we can conclude that for the period 2012–2014 no Mycobacterium species were present in the water samples. During the study period no cases of waterborne infections were reported

    TRANSMISSION OF Porphyromonas gingivalis FROM CAREGIVERS TO CHILDREN.

    No full text
    Periodontal diseases are socially significant diseases, which occur in adults but in children and adolescents as well. Despite a low prevalence of aggressive periodontitis at a young age, its severity is a challenge for pediatric dentistry. The goal of this study is to find if the prevalence of Porphyromonas gingivalis among children whose parents suffer from periodontal diseases is greater than among children with healthy parents. Methods:- Polymerase chain reaction (PCR).- Culture method. When PCR was used P.gingivalis was found in 35.5% of parents with periodontitis and in 6,5% of their children, children with healthy parents and their parents. No statistically significant relation (P>0.05) between periodontal parents and their children was found. When culture method was used P.gingivalis was not detected.Studying such correlations and standardizing methods of detection could contribute the evaluation of periodontal disease risk in adolescents

    Beijing Lineage of MDR Mycobacterium tuberculosis in Bulgaria, 2007-2011

    No full text
    To assess the spread of the Mycobacterium tuberculosis Beijing genotype among patients with multidrug-resistant and extensively resistant tuberculosis in Bulgaria, we genotyped 188 (72%) of 261 microbiologically confirmed resistant isolates obtained during 2007-2011. The estimated prevalence of the Beijing genotype among these patients was 3.2

    Dot plot of MLPA probe-specific MFI values of strains analysed.

    No full text
    <p>Median fluorescence intensity (MFI) values are indicated for each MLPA probe for every mycobacterial strain tested. The threshold used to call the presence or absence of a maker, MFI of 150, is indicated with a horizontal dashed line. Non-functional MLPA probes are indicated to the right side of the plot separated with a vertical dashed line. False positives or false negatives are highlighted in red. Brackets indicate whether a MLPA probe targets the wildtype sequence (wt), SNP (mut), the presence (P) or absence (A) of an RD, or a species-specific sequence (S).</p

    Summary of the MLPA probes designed and used in this study<sup>a</sup>.

    No full text
    a<p>only probes that were functional in this study are shown. Probes are named after the gene and specific codon, nucleotide position (bold), or region they target. Probes are either targeting the mutation (mut) or the wild type (wt) sequence or the presence or absence of an RD. Bacterial DNA sequences are targeted with the left oligo (capital letters), spanning oligo (bold), right oligo (italics), iii =  inosine. xTAG sequences are not shown. RD  =  region of difference.</p

    Validation of MLPA probes on 88 previously characterised mycobacterial strains.

    No full text
    <p>The MLPA was performed on 79 <i>M. tuberculosis</i> isolates (strains 1–79), nine non-tuberculosis mycobacteria (strains 80–88) and one species unrelated to mycobacteria (strain 89). Species identification was determined on the basis of the presence or absence of MLPA markers following calls mentioned in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043240#pone-0043240-g002" target="_blank">Figure 2</a>. Results obtained by MLPA were compared to results obtained from testing the same strain by other molecular methods. <sup>a</sup>Strain-specific drug resistance profiles and genotypic information obtained by other molecular methods is available in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043240#pone.0043240.s001" target="_blank">Table S1</a>. The presence or absence of an MLPA product is indicated with a black square or a white square, respectively. The confirmation of the MLPA result by other molecular methods is indicated with a green dot; conflicting results between MLPA and other molecular methods are indicated with a red cross. ND =  Analysis for this marker was not done. MTB4 is defined as <i>M. tuberculosis</i> group 4 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0043240#pone.0043240-Hershberg1" target="_blank">[26]</a> but not X family, LAM or Haarlem.</p
    corecore