12 research outputs found
Yeast Features: Identifying Significant Features Shared Among Yeast Proteins for Functional Genomics
Background
High throughput yeast functional genomics experiments are revealing associations among tens to hundreds of genes using numerous experimental conditions. To fully understand how the identified genes might be involved in the observed system, it is essential to consider the widest range of biological annotation possible. Biologists often start their search by collating the annotation provided for each protein within databases such as the Saccharomyces Genome Database, manually comparing them for similar features, and empirically assessing their significance. Such tasks can be automated, and more precise calculations of the significance can be determined using established probability measures. 
Results
We developed Yeast Features, an intuitive online tool to help establish the significance of finding a diverse set of shared features among a collection of yeast proteins. A total of 18,786 features from the Saccharomyces Genome Database are considered, including annotation based on the Gene Ontology’s molecular function, biological process and cellular compartment, as well as conserved domains, protein-protein and genetic interactions, complexes, metabolic pathways, phenotypes and publications. The significance of shared features is estimated using a hypergeometric probability, but novel options exist to improve the significance by adding background knowledge of the experimental system. For instance, increased statistical significance is achieved in gene deletion experiments because interactions with essential genes will never be observed. We further demonstrate the utility by suggesting the functional roles of the indirect targets of an aminoglycoside with a known mechanism of action, and also the targets of an herbal extract with a previously unknown mode of action. The identification of shared functional features may also be used to propose novel roles for proteins of unknown function, including a role in protein synthesis for YKL075C.
Conclusions
Yeast Features (YF) is an easy to use web-based application (http://software.dumontierlab.com/yeastfeatures/) which can identify and prioritize features that are shared among a set of yeast proteins. This approach is shown to be valuable in the analysis of complex data sets, in which the extracted associations revealed significant functional relationships among the gene products.

Colony size measurement of the yeast gene deletion strains for functional genomics
BACKGROUND: Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. RESULTS: Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. CONCLUSION: GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations
Colony size measurement of the yeast gene deletion strains for functional genomics
<b>Background: </b>Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences.<div><b>Results: </b>Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. </div><div><b>Conclusion: </b>GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.</div></jats:p
Colony size measurement of the yeast gene deletion strains for functional genomics
<b>Background: </b>Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences.<div><b>Results: </b>Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. </div><div><b>Conclusion: </b>GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.</div></jats:p
Yeast Features: Identifying Significant Features Shared Among Yeast Proteins for Functional Genomics
Abstract
              Background
              High throughput yeast functional genomics experiments are revealing associations among tens to hundreds of genes using numerous experimental conditions. To fully understand how the identified genes might be involved in the observed system, it is essential to consider the widest range of biological annotation possible. Biologists often start their search by collating the annotation provided for each protein within databases such as the Saccharomyces Genome Database, manually comparing them for similar features, and empirically assessing their significance. Such tasks can be automated, and more precise calculations of the significance can be determined using established probability measures.
            
              Results
              We developed Yeast Features, an intuitive online tool to help establish the significance of finding a diverse set of shared features among a collection of yeast proteins. A total of 18,786 features from the Saccharomyces Genome Database are considered, including annotation based on the Gene Ontology’s molecular function, biological process and cellular compartment, as well as conserved domains, protein-protein and genetic interactions, complexes, metabolic pathways, phenotypes and publications. The significance of shared features is estimated using a hypergeometric probability, but novel options exist to improve the significance by adding background knowledge of the experimental system. For instance, increased statistical significance is achieved in gene deletion experiments because interactions with essential genes will never be observed. We further demonstrate the utility by suggesting the functional roles of the indirect targets of an aminoglycoside with a known mechanism of action, and also the targets of an herbal extract with a previously unknown mode of action. The identification of shared functional features may also be used to propose novel roles for proteins of unknown function, including a role in protein synthesis for YKL075C.
            
              Conclusions
              Yeast Features (YF) is an easy to use web-based application (http://software.dumontierlab.com/yeastfeatures/) which can identify and prioritize features that are shared among a set of yeast proteins. This approach is shown to be valuable in the analysis of complex data sets, in which the extracted associations revealed significant functional relationships among the gene products.
            </jats:sec
Modern Approaches to Understanding Antifungal Activity of Traditional Medicines
The need to develop new antimicrobials is at the forefront of medical research. The approach of using ethnobotanical leads to identify compounds with antimicrobial activity is of particular interest as these remedies have been used by traditional healers for thousands of years with little or no adverse side effects. In this paper we discuss developments of novel assays, including array-based bioassays, that set out to determine the effect(s) of plant extracts on metabolic pathways of pathogenic fungi.
Although once a laborious task, the separation, identification and determination of mode(s) of action of plant-derived antifungals has now become more rapid and efficient due to new advancements in technology. Nevertheless, there are major bottlenecks to acquiring an understanding of the biochemical pathway(s) affected by natural products. Due to the enormous diversity of plants that may yield antifungal drugs and their complex biochemical interactions, large comprehensive databases are required that are readily accessible to the scientific community. These databases should incorporate information that spans diverse fields, from traditional healer-based knowledge and clinical studies to molecular biology bioassays
Yeast Features: Identifying Significant Features Shared Among Yeast Proteins for Functional Genomics
Colony size measurement of the yeast gene deletion strains for functional genomics
Background: Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences.Results: Here, we developed a computerized image analysis system called Growth Detector (GD), to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion: GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.</div
