443 research outputs found

    Microbial Community Composition Impacts Pathogen Iron Availability during Polymicrobial Infection

    Get PDF
    Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP)-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community

    Ablation of Adipose-HO-1 Expression Increases White Fat over Beige Fat Through Inhibition of Mitochondrial Fusion and of PGC1alpha in Female Mice

    Get PDF
    Background Hmox1 plays an important role in the regulation of mitochondrial bioenergetics and function by regulating cellular heme-derived CO and bilirubin. Previous studies have demonstrated that global disruption of HO-1 in humans and mice resulted in severe organ dysfunction. Methods We investigated the potential role of adipose-specific-HO-1 genetic ablation on adipose tissue function, mitochondrial quality control and energy expenditure by generating an adipo-HO-1 knockout mouse model (Adipo-HO-1-/-) and, in vitro, adipocyte cells in which HO activity was inhibited. Adiposity, signaling proteins, fasting glucose and oxygen consumption were determined and compared to adipocyte cultures with depressed levels of both HO-1/HO-2. Results Adipo-HO-1-/- female mice exhibited increased adipocyte size, and decreases in the mitochondrial fusion to fission ratio, PGC1, and SIRT3. Importantly, ablation of HO-1 in adipose tissue resulted in fat acquiring many properties of visceral fat such as decreases in thermogenic genes including pAMPK and PRDM16. Deletion of HO-1 in mouse adipose tissue led to complete metabolic dysfunction, an increase in white adipose tissue, a reduction of beige fat and associated increases in FAS, aP2 and hyperglycemia. Mechanistically, genetic deletion of HO-1 in adipose tissues decreased the mitochondrial fusion to fission ratio; disrupted the activity of the PGC1 transcriptional axis and thermogenic genes both in vitro and in vivo. Conclusion Ablation of adipose tissue-HO-1 abridged PGC1 expression promoted mitochondrial dysfunction and contributed to an increase of pro-inflammatory visceral fat and abrogated beige-cell like phenotype

    Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    Get PDF
    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder

    Oxidative Stress and Heme Oxygenase-1 Regulated Human Mesenchymal Stem Cells Differentiation

    Get PDF
    This paper describes the effect of increased expression of HO-1 protein and increased levels of HO activity on differentiation of bone-marrow-derived human MSCs. MSCs are multipotent cells that proliferate and differentiate into many different cell types including adipocytes and osteoblasts. HO, the rate-limiting enzyme in heme catabolism, plays an important role during MSCs differentiation. HO catalyzes the stereospecific degradation of heme to biliverdin, with the concurrent release of iron and carbon monoxide. Upregulation of HO-1 expression and increased HO activity are essential for MSC growth and differentiation to the osteoblast lineage consistent with the role of HO-1 in hematopoietic stem cell differentiation. HO-1 participates in the MSC differentiation process shifting the balance of MSC differentiation in favor of the osteoblast lineage by decreasing PPARγ and increasing osteogenic markers such as alkaline phosphatase and BMP-2. In this paper, we define HO-1 as a target molecule in the modulation of adipogenesis and osteogenesis from MSCs and examine the role of the HO system in diabetes, inflammation, osteoporosis, hypertension, and other pathologies, a burgeoning area of research

    Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    Get PDF
    Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO)-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any) on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/−) mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic) oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/−) mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer

    HO-1 Upregulation Attenuates Adipocyte Dysfunction, Obesity, and Isoprostane Levels in Mice Fed High Fructose Diets

    Get PDF
    Background. Fructose metabolism is an unregulated metabolic pathway and excessive fructose consumption is known to activate ROS.HO-1 is a potent antioxidant gene that plays a key role in decreasing ROS and isoprostanes.We examinedwhether the fructosemediated increase in adipocyte dysfunction involves an increase in isoprostanes and that pharmacological induction ofHO-1would decrease both isoprostane levels and adipogenesis. Methods and Results. We examined the effect of fructose, on adipogenesis in human MSCs in the presence and absence of CoPP, an inducer of HO-1. Fructose increased adipogenesis and the number of large lipid droplets while decreasing the number of small lipid droplets ( \u3c 0.05). Levels of heme and isoprostane in fructose treated MSC-derived adipocytes were increased. CoPP reversed these effects andmarkedly increasedHO-1 and theWnt signaling pathway. Thehigh fructose diet increased heme levels in adipose tissue and increased circulating isoprostane levels ( \u3c 0.05 versus control). Fructose diets decreasedHO-1 and adiponectin levels in adipose tissue. Induction ofHO-1 by CoPP decreased isoprostane synthesis ( \u3c 0.05 versus fructose). Conclusion. Fructose treatment resulted in increased isoprostane production and adipocyte dysfunction, which was reversed by the increased expression of HO-1

    Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    Get PDF
    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels

    Oxidative Stress and Heme Oxygenase-1 Regulated Human Mesenchymal Stem Cells Differentiation

    Get PDF
    This paper describes the effect of increased expression of HO-1 protein and increased levels of HO activity on differentiation of bone-marrow-derived human MSCs. MSCs are multipotent cells that proliferate and differentiate into many different cell types including adipocytes and osteoblasts. HO, the rate-limiting enzyme in heme catabolism, plays an important role during MSCs differentiation. HO catalyzes the stereospecific degradation of heme to biliverdin, with the concurrent release of iron and carbon monoxide. Upregulation of HO-1 expression and increased HO activity are essential for MSC growth and differentiation to the osteoblast lineage consistent with the role of HO-1 in hematopoietic stem cell differentiation. HO-1 participates in the MSC differentiation process shifting the balance of MSC differentiation in favor of the osteoblast lineage by decreasing PPARγ and increasing osteogenic markers such as alkaline phosphatase and BMP-2. In this paper, we define HO-1 as a target molecule in the modulation of adipogenesis and osteogenesis from MSCs and examine the role of the HO system in diabetes, inflammation, osteoporosis, hypertension, and other pathologies, a burgeoning area of research

    High fat diet enhances cardiac abnormalities in SHR rats: Protective role of heme oxygenase-adiponectin axis

    Get PDF
    Background High dietary fat intake is a major risk factor for development of cardiovascular and metabolic dysfunction including obesity, cardiomyopathy and hypertension. Methods The present study was designed to examine effect of high fat (HF) diet on cardio-vascular structure and function in spontaneously hypertensive rats (SHR), fed HF diet for 15 weeks, a phenotype designed to mimic metabolic syndrome. Results Development of metabolic syndrome like phenotype was confirmed using parameters, including body weight, total cholesterol and blood pressure levels. High fat diet impaired vascular relaxation by acetylcholine and exacerbated cardiac dysfunction in SHRs as evidenced by lower left ventricular function, and higher coronary resistance (CR) as compared to controls (p \u3c 0.05). The histological examination revealed significant myocardial and peri-vascular fibrosis in hearts from SHRs on HF diet. This cardiac dysfunction was associated with increased levels of inflammatory cytokines, COX-2, NOX-2, TxB2 expression and increase in superoxide (O2-) levels in SHR fed a HF diet (p \u3c 0.05). HO-1 induction via cobalt-protoporphyrin (CoPP,3 mg/kg), in HF fed rats, not only improved cardiac performance parameters, but also prevented myocardial and perivascular fibrosis. These effects of CoPP were accompanied by enhanced levels of cardiac adiponectin levels, pAMPK, peNOS and iNOS expression; otherwise significantly attenuated (p \u3c 0.05) in HF fed SHRs. Prevention of such beneficial effects of CoPP by the concurrent administration of the HO inhibitor stannic mesoporphyrin (SnMP) corroborates the role of HO system in mediating such effects. Conclusion In conclusion, this novel study demonstrates that up-regulation of HO-1 improves cardiac and vascular dysfunction by blunting oxidative stress, COX-2 levels and increasing adiponectin levels in hypertensive rats on HF diet
    corecore