40 research outputs found

    Black hole masses of tidal disruption event host galaxies

    Get PDF
    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV selected TDE host galaxies (down to ghostg_{host}\leq22 mag and zz=0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range 3×\times105^5 M_{\odot}\leqMBH_{\rm BH}\leq2×\times107^7 M_{\odot}. The TDE host galaxy sample is dominated by low mass black holes (\sim106^6 M_{\odot}), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH_{\rm BH}\leq107.1^{7.1} M_{\odot} is consistent with the Eddington limit of the SMBH, whereas the two TDEs with MBH_{\rm BH}\geq107.1^{7.1} M_{\odot} have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH_{\rm BH}\geq107.1^{7.1} M_{\odot} is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106^6 M_{\odot} black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disk as the direct origin of the blackbody radiation at peak brightness.Comment: 16 pages, 9 figures. Submitted to MNRAS; including minor revisions suggested by the refere

    Gaia transient detection efficiency: hunting for nuclear transients

    Get PDF
    We present a study of the detectability of transient events associated with galaxies for the Gaia European Space Agency astrometric mission. We simulated the on-board detections, and on-ground processing for a mock galaxy catalogue to establish the properties required for the discovery of transient events by Gaia, specifically tidal disruption events (TDEs) and supernovae (SNe). Transients may either be discovered by the on-board detection of a new source or by the brightening of a previously known source. We show that Gaia transients can be identified as new detections on-board for offsets from the host galaxy nucleus of 0.1--0.5,arcsec, depending on magnitude and scanning angle. The Gaia detection system shows no significant loss of SNe at close radial distances to the nucleus. We used the detection efficiencies to predict the number of transients events discovered by Gaia. For a limiting magnitude of 19, we expect around 1300 SNe per year: 65% SN Ia, 28% SN II and 7% SN Ibc, and ~20 TDEs per year.Comment: 17 pages, 10 figures, accepted by MNRA

    The SED Machine: a robotic spectrograph for fast transient classification

    Get PDF
    Current time domain facilities are finding several hundreds of transient astronomical events a year. The discovery rate is expected to increase in the future as soon as new surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Sky Survey (LSST) come on line. At the present time, the rate at which transients are classified is approximately one order or magnitude lower than the discovery rate, leading to an increasing "follow-up drought". Existing telescopes with moderate aperture can help address this deficit when equipped with spectrographs optimized for spectral classification. Here, we provide an overview of the design, operations and first results of the Spectral Energy Distribution Machine (SEDM), operating on the Palomar 60-inch telescope (P60). The instrument is optimized for classification and high observing efficiency. It combines a low-resolution (R\sim100) integral field unit (IFU) spectrograph with "Rainbow Camera" (RC), a multi-band field acquisition camera which also serves as multi-band (ugri) photometer. The SEDM was commissioned during the operation of the intermediate Palomar Transient Factory (iPTF) and has already proved lived up to its promise. The success of the SEDM demonstrates the value of spectrographs optimized to spectral classification. Introduction of similar spectrographs on existing telescopes will help alleviate the follow-up drought and thereby accelerate the rate of discoveries.Comment: 21 pages, 20 figure

    Progenitor, Precursor and Evolution of the Dusty Remnant of the Stellar Merger M31-LRN-2015

    Full text link
    M31-2015-LRN is a likely stellar merger discovered in the Andromeda Galaxy in 2015. We present new optical to mid-infrared photometry and optical spectroscopy for this event. Archival data shows that the source started to brighten \sim2 years before the nova event. During this precursor phase, the source brightened by \sim3 mag. The lightcurve at 6 and 1.5 months before the main outburst may show periodicity, with periods of 16±\pm0.3 and 28.1±\pm1.4 days respectively. This complex emission may be explained by runaway mass loss from the system after the binary undergoes Roche-lobe overflow, leading the system to coalesce in tens of orbital periods. While the progenitor spectral energy distribution shows no evidence of pre-existing warm dust in system, the remnant forms an optically thick dust shell at \sim4 months after the outburst peak. The optical depth of the shell increases dramatically after 1.5 years, suggesting the existence of shocks that enhance the dust formation process. We propose that the merger remnant is likely an inflated giant obscured by a cooling shell of gas with mass 0.2\sim0.2 M_{\odot} ejected at the onset of the common envelope phase.Comment: 16 pages, 10 figures. Accepted for publication in MNRA

    The luminous red nova AT 2018bwo in NGC 45 and its binary yellow supergiant progenitor

    Get PDF
    Luminous Red Novae (LRNe) are astrophysical transients associated with the partial ejection of a binary system's common envelope (CE) shortly before its merger. Here we present the results of our photometric and spectroscopic follow-up campaign of AT2018bwo (DLT18x), a LRN discovered in NGC45, and investigate its progenitor system using binary stellar-evolution models. The transient reached a peak magnitude of M_r = −10.97 ± 0.11 and maintained this brightness during its optical plateau of t_p = 41 ± 5days. During this phase, it showed a rather stable photospheric temperature of ~3300K and a luminosity of ~10⁴⁰ erg s⁻¹. The photosphere of AT2018bwo at early times appeared larger and cooler than other similar LRNe, likely due to an extended mass-loss episode before the merger. Towards the end of the plateau, optical spectra showed a reddened continuum with strong molecular absorption bands. The reprocessed emission by the cooling dust was also detected in the mid-infrared bands ~1.5 years after the outburst. Archival Spitzer and Hubble Space Telescope data taken 10-14 years before the transient event suggest a progenitor star with T_(prog) ∼ 6500K, R_(prog) ∼ 100 R_⊙ and L_(prog) ∼ 2 × 10⁴ L_⊙, and an upper limit for optically thin warm (1000 K) dust mass of M_d < 10⁻⁶ M_⊙. Using stellar binary-evolution models, we determined the properties of binary systems consistent with the progenitor parameter space. For AT2018bwo, we infer a primary mass of 12-16 M_⊙, which is 9-45% larger than the ~11M⊙ obtained using single-star evolution models. The system, consistent with a yellow-supergiant primary, was likely in a stable mass-transfer regime with -2.4 < log (Ṁ/M_⊙ yr⁻¹) < -1.2 a decade before the main instability occurred. During the dynamical merger, the system would have ejected 0.15-0.5M⊙ with a velocity of ~500 km s⁻¹

    A New Class of Changing-Look LINERs

    Get PDF
    We report the discovery of six active galactic nuclei (AGN) caught "turning on" during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as LINERs by weak narrow forbidden line emission in their archival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGN, reminiscent of the changing-look LINER iPTF 16bco. In one case, ZTF18aajupnt/AT2018dyk, follow-up HST UV and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 (NLS1) with strong [Fe VII, X, XIV] and He II 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks ~60 days later. Spitzer follow-up observations also detect a luminous mid-infrared flare implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.Comment: Submitted to ApJ, 31 pages, 17 Figures (excluding Appendix due to file size constraints but will be available in electronic version

    Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    Get PDF
    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of 56^{56}Ni to 56^{56}Co at early times, and the decay of 56^{56}Co to 56^{56}Fe from ~60 days after explosion. We examine the evolution of the [Co III] 5892 A emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of 56^{56}Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in 56^{56}Co decay, and long-term stability of the ionization state of the nebula. We compile 77 nebular spectra of 25 SN Ia from the literature and present 17 new nebular spectra of 7 SNe Ia, including SN2014J. From these we measure the flux in the [Co III] 5892 A line and remove its well-behaved time dependence to infer the initial mass of 56^{56}Ni (MNiM_{Ni}) produced in the explosion. We then examine 56^{56}Ni yields for different SN Ia ejected masses (MejM_{ej} - calculated using the relation between light curve width and ejected mass) and find the 56^{56}Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), MNiM_{Ni} is clustered near MNiM_{Ni} ~ 0.4MM_\odot and shows a shallow increase as MejM_{ej} increases from ~1-1.4MM_\odot; at high stretch, MejM_{ej} clusters at the Chandrasekhar mass (1.4MM_\odot) while MNiM_{Ni} spans a broad range from 0.6-1.2MM_\odot. This could constitute evidence for two distinct SN Ia explosion mechanisms.Comment: 16 pages, 12 figures (main text), plus data tables in appendix. Spectra released on WISeREP. Submitted to MNRAS, comments welcom
    corecore