42 research outputs found

    A biology-driven deep generative model for cell-type annotation in cytometry

    Full text link
    Cytometry enables precise single-cell phenotyping within heterogeneous populations. These cell types are traditionally annotated via manual gating, but this method suffers from a lack of reproducibility and sensitivity to batch-effect. Also, the most recent cytometers - spectral flow or mass cytometers - create rich and high-dimensional data whose analysis via manual gating becomes challenging and time-consuming. To tackle these limitations, we introduce Scyan (https://github.com/MICS-Lab/scyan), a Single-cell Cytometry Annotation Network that automatically annotates cell types using only prior expert knowledge about the cytometry panel. We demonstrate that Scyan significantly outperforms the related state-of-the-art models on multiple public datasets while being faster and interpretable. In addition, Scyan overcomes several complementary tasks such as batch-effect removal, debarcoding, and population discovery. Overall, this model accelerates and eases cell population characterisation, quantification, and discovery in cytometry

    Multicenter phase II study of matured dendritic cells pulsed with melanoma cell line lysates in patients with advanced melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several single center studies have provided evidence of immune activation and antitumor activity of therapeutic vaccination with dendritic cells (DC) in patients with metastatic melanoma. The efficacy of this approach in patients with favorable prognosis metastatic melanoma limited to the skin, subcutaneous tissues and lung (stages IIIc, M1a, M1b) was tested in a multicenter two stage phase 2 study with centralized DC manufacturing.</p> <p>Methods</p> <p>The vaccine (IDD-3) consisted 8 doses of autologous monocyte-derived matured DC generated in serum-free medium with granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-13 (IL-13), pulsed with lysates of three allogeneic melanoma cell lines, and matured with interferon gamma. The primary endpoint was antitumor activity.</p> <p>Results</p> <p>Among 33 patients who received IDD-3 there was one complete response (CR), two partial responses (PR), and six patients had stable disease (SD) lasting more than eight weeks. The overall prospectively defined tumor growth control rate was 27% (90% confidence interval of 13-46%). IDD-3 administration had minimal toxicity and it resulted in a high frequency of immune activation to immunizing melanoma antigens as assessed by <it>in vitro </it>immune monitoring assays.</p> <p>Conclusions</p> <p>The administration of matured DC loaded with tumor lysates has significant immunogenicity and antitumor activity in patients with limited metastatic melanoma.</p> <p>Clinical trial registration</p> <p>NCT00107159.</p

    Early T Cell Signalling Is Reversibly Altered in PD-1+ T Lymphocytes Infiltrating Human Tumors

    Get PDF
    To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL

    T Cells Contribute to Tumor Progression by Favoring Pro-Tumoral Properties of Intra-Tumoral Myeloid Cells in a Mouse Model for Spontaneous Melanoma

    Get PDF
    Tumors affect myelopoeisis and induce the expansion of myeloid cells with immunosuppressive activity. In the MT/ret model of spontaneous metastatic melanoma, myeloid cells are the most abundant tumor infiltrating hematopoietic population and their proportion is highest in the most aggressive cutaneous metastasis. Our data suggest that the tumor microenvironment favors polarization of myeloid cells into type 2 cells characterized by F4/80 expression, a weak capacity to secrete IL-12 and a high production of arginase. Myeloid cells from tumor and spleen of MT/ret mice inhibit T cell proliferation and IFNγ secretion. Interestingly, T cells play a role in type 2 polarization of myeloid cells. Indeed, intra-tumoral myeloid cells from MT/ret mice lacking T cells are not only less suppressive towards T cells than corresponding cells from wild-type MT/ret mice, but they also inhibit more efficiently melanoma cell proliferation. Thus, our data support the existence of a vicious circle, in which T cells may favor cancer development by establishing an environment that is likely to skew myeloid cell immunity toward a tumor promoting response that, in turn, suppresses immune effector cell functions

    Dynamic CD8+ T Cell Cooperation with Macrophages and Monocytes for Successful Cancer Immunotherapy

    No full text
    International audienceThe essential roles endorsed by macrophages and monocytes are well established in response to infections, where they contribute to launching the differentiation of specific T-lymphocytes for long-term protection. This knowledge is the result of dynamic studies that can inspire the cancer field, particularly now that cancer immunotherapies elicit some tumor regression. Indeed, immune responses to cancer have mainly been studied after tumors have escaped immune attacks. In particular, the suppressive functions of macrophages were revealed in this context, introducing an obvious bias across the literature. In this review, we will focus on the ways inwhich monocytes and macrophages cooperate with T-lymphocytes, leading to successful immune responses. We will bring together the preclinical studies that have revealed the existence of such positive cooperation in the cancer field, and we will place particular emphasis on proposing the underlying mechanisms. Finally, we will give some perspectives to decipher the functional roles of such T-cell and myeloid cell interactions in the frame of human cancer immunotherapy

    The Remarkable Plasticity of Macrophages: A Chance to Fight Cancer

    No full text
    International audienceIt is well established that tumor-associated macrophages (TAM) found in most advanced tumors have a pro-tumoral role. In this context, TAM limit the activity of tumor-infiltrating lymphocytes (TIL), and a number of mechanisms have been described including a trapping in the stroma, impeding TIL to reach malignant cells. Based on these results, a number of therapeutic approaches have been designed to deplete TAM. However, during tumor regression induced by immunotherapeutic treatments, recent studies revealed that TAM can switch from pro-tumoral to anti-tumoral and actively cooperate with TIL. Here, we will review the two faces of TAM in their interaction with TIL. We will summarize how they can inhibit T cell activities in growing tumors, and how they may also, together with T cells, successfully contribute to tumor eradication after an appropriate stimulation. Finally, we will discuss current promising therapies combining TAM reprogramming with T cell-based immunotherapy

    Dynamic CD8+ T Cell Cooperation with Macrophages and Monocytes for Successful Cancer Immunotherapy

    No full text
    International audienceThe essential roles endorsed by macrophages and monocytes are well established in response to infections, where they contribute to launching the differentiation of specific T-lymphocytes for long-term protection. This knowledge is the result of dynamic studies that can inspire the cancer field, particularly now that cancer immunotherapies elicit some tumor regression. Indeed, immune responses to cancer have mainly been studied after tumors have escaped immune attacks. In particular, the suppressive functions of macrophages were revealed in this context, introducing an obvious bias across the literature. In this review, we will focus on the ways inwhich monocytes and macrophages cooperate with T-lymphocytes, leading to successful immune responses. We will bring together the preclinical studies that have revealed the existence of such positive cooperation in the cancer field, and we will place particular emphasis on proposing the underlying mechanisms. Finally, we will give some perspectives to decipher the functional roles of such T-cell and myeloid cell interactions in the frame of human cancer immunotherapy
    corecore