101 research outputs found

    Frauenforschung in der Soziologie - quo vadis?

    Get PDF
    It is widely accepted that the devastating consequences of spinal cord injury are due to the failure of lesioned CNS axons to regenerate. The current study of the spontaneous tissue repair processes following dorsal hemisection of the adult rat spinal cord demonstrates a phase of rapid and substantial nerve fibre in‐growth into the lesion that was derived largely from both rostral and caudal spinal tissues. The response was characterized by increasing numbers of axons traversing the clearly defined interface between the lesion and the adjacent intact spinal cord, beginning by 5 days post operation (p.o.). Having penetrated the lesion, axons became associated with a framework of NGFr‐positive non‐neuronal cells (Schwann cells and leptomeningeal cells). Surprisingly few of these axons were derived from CGRP‐ or SP‐immunoreactive dorsal root ganglion neurons. At the longest survival time (56 days p.o.), there was a marked shift in the overall orientation of fibres from a largely rostro‐caudal to a dorso‐ventral axis. Attempts to identify which recognition molecules may be important for these re‐organizational processes during attempted tissue repair demonstrated the widespread and intense expression of the cell adhesion molecules (CAM) L1 and N‐CAM. Double immunofluorescence suggested that both Schwann cells and leptomeningeal cells contributed to the pattern of CAM expression associated with the cellular framework within the lesion

    Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age.</p> <p>Results</p> <p>Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens.</p> <p>Conclusion</p> <p>The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.</p

    Bilaterale Hypoglossusparese als isolierte neurologische Symptomatik nach Schädel-Hirn-Trauma

    No full text
    We report a 72-year-old patient who developed an isolated bilateral hypoglossal nerve paralysis following head trauma with complete recovery after three months. Since the CT scan did not show any fractures of the posterior skull base, we discuss a traction nerve injury as a possible mechanism

    Funktionelle Anatomie des Rückenmarks

    No full text

    Spinale Syndrome

    No full text

    Spinale Syndrome

    No full text

    Funktionelle Anatomie des Rückenmarks

    No full text

    Bilaterale Hypoglossusparese als isolierte neurologische Symptomatik nach Schädel-Hirn-Trauma

    No full text

    Vaskuläre Erkrankungen des Rückenmarks

    No full text
    corecore