6 research outputs found

    Accuracy of saliva for SARS-CoV-2 detection in outpatients and their household contacts during the circulation of the Omicron variant of concern.

    Get PDF
    BACKGROUND: While nasopharyngeal (NP) swabs are considered the gold standard for severe acute respiratory coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase-polymerase chain reaction (RT-PCR) detection, several studies have shown that saliva is an alternative specimen for COVID-19 diagnosis and screening. METHODS: To analyze the utility of saliva for the diagnosis of COVID-19 during the circulation of the Omicron variant, participants were enrolled in an ongoing cohort designed to assess the natural history of SARS-CoV-2 infection in adults and children. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and Cohen's kappa coefficient were calculated to assess diagnostic performance. RESULTS: Overall, 818 samples were collected from 365 outpatients from January 3 to February 2, 2022. The median age was 32.8 years (range: 3-94 years). RT-PCR for SARS-CoV-2 was confirmed in 97/121 symptomatic patients (80.2%) and 62/244 (25.4%) asymptomatic patients. Substantial agreement between saliva and combined nasopharyngeal/oropharyngeal samples was observed with a Cohen's kappa value of 0.74 [95% confidence interval (CI): 0.67-0.81]. Sensitivity was 77% (95% CI: 70.9-82.2), specificity 95% (95% CI: 91.9-97), PPV 89.8% (95% CI: 83.1-94.4), NPV 87.9% (95% CI: 83.6-91.5), and accuracy 88.5% (95% CI: 85.0-91.4). Sensitivity was higher among samples collected from symptomatic children aged three years and older and adolescents [84% (95% CI: 70.5-92)] with a Cohen's kappa value of 0.63 (95% CI: 0.35-0.91). CONCLUSIONS: Saliva is a reliable fluid for detecting SARS-CoV-2, especially in symptomatic children and adolescents during the circulation of the Omicron variant

    Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    No full text
    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5and 40.8, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis

    Basic Surface Properties of Mononuclear Cells from Didelphis marsupialis

    No full text
    The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5and 40.8, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis

    Morphological and biochemical characterization of macrophages activated by carrageenan and lipopolysaccharide in vivo

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2020-03-24T17:56:08Z No. of bitstreams: 1 MAriaNLMeireles_HugoCastro_etal_IOC_2004.pdf: 2267449 bytes, checksum: bdc8dd768e7ed7eb077fdb3eb44ffb8a (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2020-03-24T18:14:54Z (GMT) No. of bitstreams: 1 MAriaNLMeireles_HugoCastro_etal_IOC_2004.pdf: 2267449 bytes, checksum: bdc8dd768e7ed7eb077fdb3eb44ffb8a (MD5)Made available in DSpace on 2020-03-24T18:14:54Z (GMT). No. of bitstreams: 1 MAriaNLMeireles_HugoCastro_etal_IOC_2004.pdf: 2267449 bytes, checksum: bdc8dd768e7ed7eb077fdb3eb44ffb8a (MD5) Previous issue date: 2004Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Ultra-estrutura e Biologia Celular. Laboratório de Ultra-estrutura Celular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Ultra-estrutura e Biologia Celular. Laboratório de Biologia Celular. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Fisiologia e Farmacodinâmica. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Fisiologia e Farmacodinâmica. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Fisiologia e Farmacodinâmica. Laboratório de Imunofarmacologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Ultra-estrutura e Biologia Celular. Laboratório de Ultra-estrutura Celular. Rio de Janeiro, RJ, Brasil.Macrophages are able to recognize, internalize and destroy a large number of pathogens, thus restricting the infection until adaptive immunity is initiated. In this work our aim was to analyze the surface charge of cells activated by carrageenan (CAR) and lipopolysaccharide (LPS) through light and electron microscopy approaches as well as the release of inflammatory mediators in vitro. The ultrastuctural analysis and the light microscopy data showed that in vivo administration of CAR represents a potent inflammatory stimulation for macrophages leading to a high degree of spreading, an increase in their size, in the number of the intracellular vacuoles and membrane projections as compared to the macrophages collected from untreated animals as well as mice submitted to LPS. Our data demonstrated that CAR stimulated-macrophages displayed a remarkable increase in nitric oxide production and PGE2 release as compared to the cells collected from non-stimulated and stimulated mice with LPS in vivo. On the other hand, non-stimulated macrophages as well as macrophages stimulated by LPS produce almost the same quantities of TNF-alpha, while in vivo stimulation by CAR leads to a 30-40% increase of cytokine release in vitro compared to the other groups. In conclusion, our morphological and biochemical data clearly showed that in vivo stimulation with CAR induces a potent inflammatory response in macrophages representing an interesting model to analyze inflammatory responses

    Comparative analysis of SARS-CoV-2 variants Alpha (B.1.1.7), Gamma (P.1), Zeta (P.2) and Delta (B.1.617.2) in Vero-E6 cells: ultrastructural characterization of cytopathology and replication kinetics

    No full text
    This study compares the effects of virus-cell interactions among SARS-CoV-2 variants of concern (VOCs) isolated in Brazil in 2021, hypothesizing a correlation between cellular alterations and mortality and between viral load and transmissibility. For this purpose, reference isolates of Alpha, Gamma, Zeta, and Delta variants were inoculated into monolayers of Vero-E6 cells. Viral RNA was quantified in cell supernatants by RT‒PCR, and infected cells were analyzed by Transmission Electron Microscopy (TEM) for qualitative and quantitative evaluation of cellular changes 24, 48, and 72 hours postinfection (hpi). Ultrastructural analyses showed that all variants of SARS-CoV-2 altered the structure and function of mitochondria, nucleus, and rough endoplasmic reticulum of cells. Monolayers infected with the Delta variant showed the highest number of modified cells and the greatest statistically significant differences compared to those of other variants. Viral particles were observed in the cytosol and the cell membrane in 100 % of the cells at 48 hpi. Alpha showed the highest mean particle diameter (79 nm), and Gamma and Delta were the smallest (75 nm). Alpha and Gamma had the highest particle frequency per field at 48 hpi, while the same was observed for Zeta and Delta at 72 hpi and 24 hpi, respectively. The cycle threshold of viral RNA varied among the target protein, VOC, and time of infection. The findings presented here demonstrate that all four VOCs evaluated caused ultrastructural changes in Vero-E6 cells, which were more prominent when infection occured with the Delta variant
    corecore