28 research outputs found

    RV POSEIDON Cruise Report POS473 LORELEI II: LOphelia REef Lander Expedition and Investigation II, Tromsø – Bergen – Esbjerg, 15.08. – 31.08. – 04.09.2014

    Get PDF
    As a result of the raising CO2-emissions and the resultant ocean acidification (decreasing pH and carbonate ion concentration), the impact on marine organism that build their skeletons and protective shells with calcium carbonate (e.g., mollusks, sea urchins, coccolithophorids, and stony corals) becomes more and more detrimental. In the last few years, many experiments with tropical reef building corals have shown, that a lowering of the carbonate ion concentration significantly reduces calcification rates and therefore growth (e.g., Gattuso et al. 1999; Langdon et al. 2000, 2003; Marubini et al. 2001, 2002). In the middle of this century, many tropical coral reefs may well erode faster than they can rebuild. Cold-water corals are living in an environment (high geographical latitude, cold and deep waters) already close to a critical carbonate ion concentration below calcium carbonate dissolves. Actual projections indicate that about 70% of the currently known Lophelia reef structures will be in serious danger until the end of the century (Guinotte et al. 2006). Therefore L. pertusa was cultured at GEOMAR to determine its long-term response to ocean acidification. Our work has revealed that – unexpectedly and controversially to the majority of warm-water corals – this species is potentially able to cope with elevated concentrations of CO2. Whereas short-term (1 week) high CO2 exposure resulted in a decline of calcification by 26-29 % for a pH decrease of 0.1 units and net dissolution of calcium carbonate, L. pertusa was capable to acclimate to acidified conditions in long-term (6 months) incubations, leading to slightly enhanced rates of calcification (Form & Riebesell, 2012). But all these studies were carried out in the laboratory under controlled conditions without considering natural variability and ecosystem interactions with the associated fauna. Moreover, only very little is known about the nutrition (food sources and quantity) of cold-water corals in their natural habitat. In a multifactorial laboratory study during BIOACID phase II we could show that food availability is one of the key drivers that promote the capability of these organisms to withstand environmental pressures such as alterations in the carbonate chemistry and temperature (Büscher, Form & Riebesell, in prep.). To take into account the influences of natural fluctuations and interactions (e.g. bioerosion), we aim to merge in-situ results from the two research cruises POS455 and POS473 with laboratory experimental studies for a comprehensive understanding of likely ecosystem responses under past, present and future environmental conditions

    Maximum rates of N2 fixation and primary production are out of phase in a developing cyanobacterial bloom in the Baltic Sea

    Get PDF
    Although N2-fixing cyanobacteria contribute significantly to oceanic sequestration of atmospheric CO2, little is known about how N2 fixation and carbon fixation (primary production) interact in natural populations of marine cyanobacteria. In a developing cyanobacterial bloom in the Baltic Sea, rates of N2 fixation (acetylene reduction) showed both diurnal and longer-term fluctuations. The latter reflected fluctuations in the nitrogen status of the cyanobacterial population and could be correlated with variations in the ratio of acetylene reduced to 15N2 assimilated. The value of this ratio may provide useful information about the release of newly fixed nitrogen by a cyanobacterial population. However, although the diurnal fluctuations in N2 fixation broadly paralleled diurnal fluctuations in carbon fixation, the longer-term fluctuations in these two processes were out of phase

    Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwel­ling

    Get PDF
    The tropical oceans are a source of reactive bromine to the atmosphere in the form of short-lived brominated methanes as bromoform (CHBr3) and dibromomethane (CH2Br2). Elevated atmospheric concentrations above the tropical oceans are related to oceanic supersaturations of the compounds and especially to upwelling regimes. Although the sources of these brominated gases in the open ocean are not well understood, they have been habitually linked to phytoplankton, especially diatom abundance. Thus according to common assumptions, high concentrations of the brominated trace gases were expected to occur in the biologically active and diatom-rich Mauritanian upwelling. However, contrary to expectations, only low levels were encountered in the upwelling waters, 10.7 (range 5.2–23.8) pmol L−1 CHBr3 and 4.7 (range 3.1–7.0) pmol L−1 CH2Br2, values more typical of open ocean concentrations. The aqueous CHBr3 concentrations were not correlated to high chlorophyll a values or diatom abundances. However, significant correlations existed with low concentrations of marker pigments for diatoms, cyanobacteria, and degradation, suggesting miscellaneous small biological sources of the compound in the upwelling. Air-sea exchange could additionally account for an oceanic source in fresh upwelled waters, while advection of different water masses also influenced the distribution. CHBr3 concentrations were maximized in warm and nitrogen-depleted surface waters, while CH2Br2 was maximized in colder and nitrogen-enriched deeper waters, suggesting that both compounds, at least in part, have different sources and fates

    Organic matter fluxes and biogeochemical processes in the OMZ off Peru, Cruise No. M138, 01 June - 03 July 2017, Callao (Peru) - Bahia Las Minas (Panama)

    Get PDF
    The oxygen minimum zone (OMZ) in the eastern tropical South Pacific Ocean is tightly connected to the coastal upwelling system off Peru. The high biological productivity off Peru is therefore, driven by the complex interplay between the amount of nutrients recycled by remineralisation processes in the OMZ and the upwelling which brings these nutrients to the surface layer. However, surprisingly little is known about organic matter cycling and its effects on biogeochemical processes in the OMZ off Peru. To this end we conducted a first comprehensive study on the role of organic matter for the biogeochemical processes and the maintenance of the OMZ off Peru. M138 combined measurements of marine biogeochemistry, microbiology, physical oceanography and air chemistry with foci on (i) the efficiency of the biological pump, (ii) the nitrogen cycle processes in the OMZ, (iii) the ventilation of the OMZ as well as (iv) the air/sea gas exchange across the ocean/atmosphere interface and (v) aerosol deposition. The METEOR cruise M138 was performed as part of the third phase of the SFB754 'Climate-Biogeochemistry Interactions in the Tropical Ocean' (www.sfb754.de)
    corecore