37 research outputs found

    The NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries

    Get PDF
    Several pilot experiments have indicated that improvements in older NMR structures can be expected by applying modern software and new protocols (Nabuurs et al. in Proteins 55:483–186, 2004; Nederveen et al. in Proteins 59:662–672, 2005; Saccenti and Rosato in J Biomol NMR 40:251–261, 2008). A recent large scale X-ray study also has shown that modern software can significantly improve the quality of X-ray structures that were deposited more than a few years ago (Joosten et al. in J. Appl Crystallogr 42:376–384, 2009; Sanderson in Nature 459:1038–1039, 2009). Recalculation of three-dimensional coordinates requires that the original experimental data are available and complete, and are semantically and syntactically correct, or are at least correct enough to be reconstructed. For multiple reasons, including a lack of standards, the heterogeneity of the experimental data and the many NMR experiment types, it has not been practical to parse a large proportion of the originally deposited NMR experimental data files related to protein NMR structures. This has made impractical the automatic recalculation, and thus improvement, of the three dimensional coordinates of these structures. We here describe a large-scale international collaborative effort to make all deposited experimental NMR data semantically and syntactically homogeneous, and thus useful for further research. A total of 4,014 out of 5,266 entries were ‘cleaned’ in this process. For 1,387 entries, human intervention was needed. Continuous efforts in automating the parsing of both old, and newly deposited files is steadily decreasing this fraction. The cleaned data files are available from the NMR restraints grid at http://restraintsgrid.bmrb.wisc.edu

    Structural Biology by NMR: Structure, Dynamics, and Interactions

    Get PDF
    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data

    Orientation-dependent backbone-only residue pair scoring functions for fixed backbone protein design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Empirical scoring functions have proven useful in protein structure modeling. Most such scoring functions depend on protein side chain conformations. However, backbone-only scoring functions do not require computationally intensive structure optimization and so are well suited to protein design, which requires fast score evaluation. Furthermore, scoring functions that account for the distinctive relative position and orientation preferences of residue pairs are expected to be more accurate than those that depend only on the separation distance.</p> <p>Results</p> <p>Residue pair scoring functions for fixed backbone protein design were derived using only backbone geometry. Unlike previous studies that used spherical harmonics to fit 2D angular distributions, Gaussian Mixture Models were used to fit the full 3D (position only) and 6D (position and orientation) distributions of residue pairs. The performance of the 1D (residue separation only), 3D, and 6D scoring functions were compared by their ability to identify correct threading solutions for a non-redundant benchmark set of protein backbone structures. The threading accuracy was found to steadily increase with increasing dimension, with the 6D scoring function achieving the highest accuracy. Furthermore, the 3D and 6D scoring functions were shown to outperform side chain-dependent empirical potentials from three other studies. Next, two computational methods that take advantage of the speed and pairwise form of these new backbone-only scoring functions were investigated. The first is a procedure that exploits available sequence data by averaging scores over threading solutions for homologs. This was evaluated by applying it to the challenging problem of identifying interacting transmembrane alpha-helices and found to further improve prediction accuracy. The second is a protein design method for determining the optimal sequence for a backbone structure by applying Belief Propagation optimization using the 6D scoring functions. The sensitivity of this method to backbone structure perturbations was compared with that of fixed-backbone all-atom modeling by determining the similarities between optimal sequences for two different backbone structures within the same protein family. The results showed that the design method using 6D scoring functions was more robust to small variations in backbone structure than the all-atom design method.</p> <p>Conclusions</p> <p>Backbone-only residue pair scoring functions that account for all six relative degrees of freedom are the most accurate and including the scores of homologs further improves the accuracy in threading applications. The 6D scoring function outperformed several side chain-dependent potentials while avoiding time-consuming and error prone side chain structure prediction. These scoring functions are particularly useful as an initial filter in protein design problems before applying all-atom modeling.</p

    A theoretical entropy score as a single value to express inhibitor selectivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing maximally selective ligands that act on individual targets is the dominant paradigm in drug discovery. Poor selectivity can underlie toxicity and side effects in the clinic, and for this reason compound selectivity is increasingly monitored from very early on in the drug discovery process. To make sense of large amounts of profiling data, and to determine when a compound is sufficiently selective, there is a need for a proper quantitative measure of selectivity.</p> <p>Results</p> <p>Here we propose a new theoretical entropy score that can be calculated from a set of IC<sub>50 </sub>data. In contrast to previous measures such as the 'selectivity score', Gini score, or partition index, the entropy score is non-arbitary, fully exploits IC<sub>50 </sub>data, and is not dependent on a reference enzyme. In addition, the entropy score gives the most robust values with data from different sources, because it is less sensitive to errors. We apply the new score to kinase and nuclear receptor profiling data, and to high-throughput screening data. In addition, through analyzing profiles of clinical compounds, we show quantitatively that a more selective kinase inhibitor is not necessarily more drug-like.</p> <p>Conclusions</p> <p>For quantifying selectivity from panel profiling, a theoretical entropy score is the best method. It is valuable for studying the molecular mechanisms of selectivity, and to steer compound progression in drug discovery programs.</p

    A method for validating the accuracy of NMR protein structures

    Get PDF
    We present a method that measures the accuracy of NMR protein structures. It compares random coil index [RCI] against local rigidity predicted by mathematical rigidity theory, calculated from NMR structures [FIRST], using a correlation score (which assesses secondary structure), and an RMSD score (which measures overall rigidity). We test its performance using: structures refined in explicit solvent, which are much better than unrefined structures; decoy structures generated for 89 NMR structures; and conventional predictors of accuracy such as number of restraints per residue, restraint violations, energy of structure, ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD are poor measures of accuracy. Comparisons of NMR to crystal structures show that secondary structure is equally accurate, but crystal structures are typically too rigid in loops, whereas NMR structures are typically too floppy overall. We show that the method is a useful addition to existing measures of accuracy

    Homology modelling and spectroscopy, a never-ending love story

    Get PDF
    Homology modelling is normally the technique of choice when experimental structure data are not available but three-dimensional coordinates are needed, for example, to aid with detailed interpretation of results of spectroscopic studies. Herein, the state of the art of homology modelling will be described in the light of a series of recent developments, and an overview will be given of the problems and opportunities encountered in this field. The major topic, the accuracy and precision of homology models, will be discussed extensively due to its influence on the reliability of conclusions drawn from the combination of homology models and spectroscopic data. Three real-world examples will illustrate how both homology modelling and spectroscopy can be beneficial for (bio)medical research
    corecore