36 research outputs found

    A Process for the Production of 2-Alkyl or 2-Cycloalkyl-4-methyl-6-hydroxypyrimidines

    Get PDF
    Production of 2-alkyl- or cycloalkyl-4-methyl-6- hydroxypyrimidines by first neutralizing an alkyl imidate ester hydrochloride with a base in the presence of a water-immiscible solvent for the alkyl imidate ester to be freed thereby; condensing the alkyl imidate ester with diketene to form an oxazinone intermediate, which is then reacted in organic solution with gaseous ammonia and recovering the desired substituted 6-hydroxypyrimidine

    Diagnosing growth in low-grade gliomas with and without longitudinal volume measurements: A retrospective observational study.

    Get PDF
    BACKGROUND: Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no universally accepted objective technique available for detection of enlargement of low-grade gliomas in the clinical setting; subjective evaluation by clinicians using visual comparison of longitudinal radiological studies is the gold standard. The aim of this study is to determine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier growth of low-grade gliomas. METHODS AND FINDINGS: We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Alabama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females with a mean age of 48 years and a range of follow-up of 150.2 months (difference between highest and lowest values). None received radiation therapy. We also studied 7 patients with an imaging abnormality without pathological diagnosis, who were clinically stable at the time of retrospective review (14 May 2018). This study compared growth detection by 7 physicians aided by the CAD method with retrospective clinical reports. The tumors of 63 patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radiological progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted of tumor segmentation, computing volumes, and pointing to growth by the online abrupt change-of-point method, which considers only past measurements. Independent scientists have evaluated the segmentation method. In 29 of the 34 patients with progression, the median time to growth detection was only 14 months for CAD compared to 44 months for current standard of care radiological evaluation (p \u3c 0.001). Using CAD, accurate detection of tumor enlargement was possible with a median of only 57% change in the tumor volume as compared to a median of 174% change of volume necessary to diagnose tumor growth using standard of care clinical methods (p \u3c 0.001). In the radiologically stable group, CAD facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging abnormality group. The main limitation of this study was its retrospective design; nevertheless, the results depict the current state of a gold standard in clinical practice that allowed a significant increase in tumor volumes from baseline before detection. Such large increases in tumor volume would not be permitted in a prospective design. The number of glioma patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase II clinical trials. CONCLUSIONS: The current practice of visual comparison of longitudinal MRI scans is associated with significant delays in detecting growth of low-grade gliomas. Our findings support the idea that physicians aided by CAD detect growth at significantly smaller volumes than physicians using visual comparison alone. This study does not answer the questions whether to treat or not and which treatment modality is optimal. Nonetheless, early growth detection sets the stage for future clinical studies that address these questions and whether early therapeutic interventions prolong survival and improve quality of life

    Custom Integrated Circuits

    Get PDF
    Contains reports on ten research projects.Analog Devices, Inc.IBM CorporationNational Science Foundation/Defense Advanced Research Projects Agency Grant MIP 88-14612Analog Devices Career Development Assistant ProfessorshipU.S. Navy - Office of Naval Research Contract N0014-87-K-0825AT&TDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    Custom Integrated Circuits

    Get PDF
    Contains reports on twelve research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAAL03-86-K-0002)Joint Services Electronics Program (Contract DAAL03-89-C-0001)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI Semiconductor, Inc.U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryNational Science Foundation (Grant MIP 84-07285)National Science Foundation (Grant MIP 87-14969)Battelle LaboratoriesNational Science Foundation (Grant MIP 88-14612)DuPont CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation (Grant MIP-88-58764

    A phase 2 study of radiosurgery and temozolomide for patients with 1 to 4 brain metastases

    No full text
    Purpose: To determine if temozolomide reduces the risk of distant brain failure (DBF, metachronous brain metastases) in patients with 1 to 4 brain metastases treated with radiosurgery without whole-brain radiation therapy (WBRT). Methods and materials: Twenty-five patients with newly diagnosed brain metastases were enrolled in a single institution phase 2 trial of radiosurgery (15-24 Gy) and adjuvant temozolomide. Temozolomide was continued for a total of 12 cycles unless the patient developed DBF, unacceptable toxicity, or systemic progression requiring other therapy. Results: Twenty-five patients were enrolled between 2002 and 2005; 3 were not evaluable for determining DBF. Of the remaining 22 patients, tumor types included non-small cell lung cancer (n = 8), melanoma (n = 7), and other (n = 7). Extracranial disease was present in 10 (45%) patients. The median number of tumors at the time of radiosurgery was 3 (range, 1-6). The median overall survival was 31 weeks. The median radiographic follow-up for patients who did not develop DBF was 33 weeks. Six patients developed DBF. The 1-year actuarial risk of DBF was 37%. Conclusions: In this study, there was a relatively low risk of distant brain failure observed in the nonmelanoma subgroup receiving temozolamide. However, patient selection factors rather than chemotherapy treatment efficacy are more likely the reason for the relatively low risk of distant brain failure observed in this study. Future trial design should account for these risk factors

    Phase I/Randomized Phase II Study of Afatinib an Irreversible Erbb Family Blocker With Or Without Protracted Temozolomide in Adults With Recurrent Glioblastoma

    No full text
    Background. This phase I/II trial evaluated the maximum tolerated dose (MTD) and pharmacokinetics of afatinib plus temozolomide as well as the efficacy and safety of afatinib as monotherapy (A) or with temozolomide (AT) vs temozolomide monotherapy (T) in patients with recurrent glioblastoma (GBM). Methods. Phase I followed a traditional 3 + 3 dose-escalation design to determine MTD. Treatment cohorts were: afatinib 20, 40, and 50 mg/day (plus temozolomide 75 mg/m2/day for 21 days per 28-day cycle). In phase II, participants were randomized (stratified by age and KPS) to receive A, T or AT; A was dosed at 40 mg/day and T at 75 mg/m2for 21 of 28 days. Primary endpoint was progression-free survival rate at 6 months (PFS-6). Participants were treated until intolerable adverse events (AEs) or disease progression. Results. Recommended phase II dose was 40 mg/day (A) + T based on safety data from phase I (n = 32). Most frequent AEs in phase II (n = 119) were diarrhea (71% [A], 82% [AT]) and rash (71% [A] and 69% [AT]). Afatinib and temozolomide pharmacokinetics were unaffected by coadministration. Independently assessed PFS-6 rate was 3% (A), 10% (AT), and 23% (T). Median PFS was longer in afatinib-treated participants with epidermal growth factor receptor (EFGR) vIII-positive tumors versus EGFRvIII-negative tumors. Best overall response included partial response in 1 (A), 2 (AT), and 4 (T) participants and stable disease in 14 (A), 14 (AT), and 21 (T) participants. Conclusions. Afatinib has a manageable safety profile but limited single-agent activity in unselected recurrent GBM patients
    corecore