5 research outputs found
Estrous cycle length in the algerian arbia goat: exfoliative vaginal cytology and serum progesterone levels
This study aimed to estimate the estrous cycle length of the Algerian Arbia goat in
Northern Algeria. For this, eighteen (18) Arbia goats, aged between 2 and 6 years, were
used in our work that took place in the experimental farm of the Saad Dahlab University
(Blida, Algeria). Blood samples were taken from each goat twice a week (at a 2 or 3-day
interval) for 3 months. The serum progesterone concentration was determined by
Radio-Immuno-Assay. Smears of the vaginal mucosa were taken at the same time as
the blood samples. The predominance of superficial cells on the smear of the vaginal
mucosa as well as a serum progesterone level less than 1 ng/mL expressed the return
to estrous which was considered the beginning of a new cycle. A negative correlation
was observed between the percentage of superficial cells (SC) and serum progesterone
(P4) levels in all goats. Our results showed a significant difference (P<0.05) between the
means of different cycle lengths obtained among the females. In addition, normal cycles
had an average of 20.11±1.85 days (17-25 days) representing 59.6% of cycles. Besides, a
large number of short cycles (<17 days) with an average of 14.41±1.51 days were found
representing 25.5% of recorded cycles. The number of long cycles (>25 days; with an
average of 32.14±5.58 days), represented 14.9% of recorded cycles. Following these
results, it can be concluded that the local goat in Northern Algeria had different types of
cycles (normal, short, and long) with a large percentage of normal cycles
Chromosomal abnormalities in 163 Tunisian couples with recurrent miscarriages
Recurrent miscarriage (RM) is defined as three or more consecutive pregnancy losses before 24 weeks of gestation. Parental chromosomal abnormalities represent an important etiology of RM. The aim of the present study was to identify the distribution of chromosome abnormalities among Tunisian couples with RM referred to the Department of Cytogenetic at the Pasteur Institute of Tunis (Tunisia) during the last five years. Standard cytogenetic analysis was carried out in a total of 163 couples presenting with two or more spontaneous abortions. Karyotypes were analyzed by R-banding. We identified 14 chromosomal abnormalities including autosomal reciprocal translocation, Robertsonian translocation, inversion, mosaic aneuploidy and heteromorphysm. The overall prevalence of chromosomal abnormalities was 8.5% in our cohort. This finding underlies the importance of cytogenetic investigations in the routine management of RM
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Predictors of embolism and death in left-sided infective endocarditis: the European Society of Cardiology EURObservational Research Programme European Infective Endocarditis registry
International audienceBackground and Aims Even though vegetation size in infective endocarditis (IE) has been associated with embolic events (EEs) and mortality risk, it is unclear whether vegetation size associated with these potential outcomes is different in left-sided IE (LSIE). This study aimed to seek assessing the vegetation cut-off size as predictor of EE or 30-day mortality for LSIE and to determine risk predictors of these outcomes. Methods The European Society of Cardiology EURObservational Research Programme European Infective Endocarditis is a prospective, multicentre registry including patients with definite or possible IE throughout 2016–18. Cox multivariable logistic regression analysis was performed to assess variables associated with EE or 30-day mortality. Results There were 2171 patients with LSIE (women 31.5%). Among these affected patients, 459 (21.1%) had a new EE or died in 30 days. The cut-off value of vegetation size for predicting EEs or 30-day mortality was >10 mm [hazard ratio (HR) 1.38, 95% confidence interval (CI) 1.13–1.69, P = .0015]. Other adjusted predictors of risk of EE or death were as follows: EE on admission (HR 1.89, 95% CI 1.54–2.33, P < .0001), history of heart failure (HR 1.53, 95% CI 1.21–1.93, P = .0004), creatinine >2 mg/dL (HR 1.59, 95% CI 1.25–2.03, P = .0002), Staphylococcus aureus (HR 1.36, 95% CI 1.08–1.70, P = .008), congestive heart failure (HR 1.40, 95% CI 1.12–1.75, P = .003), presence of haemorrhagic stroke (HR 4.57, 95% CI 3.08–6.79, P < .0001), alcohol abuse (HR 1.45, 95% CI 1.04–2.03, P = .03), presence of cardiogenic shock (HR 2.07, 95% CI 1.29–3.34, P = .003), and not performing left surgery (HR 1.30 95% CI 1.05–1.61, P = .016) (C-statistic = .68). Conclusions Prognosis after LSIE is determined by multiple factors, including vegetation size