11 research outputs found

    Human Alu insertion polymorphisms in North African populations

    Get PDF
    Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period

    Contribution of type 2 diabetes associated loci in the Arabic population from Tunisia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia.</p> <p>Methods</p> <p>A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in <it>KCNJ11/Kir6.2</it>, K121Q in <it>ENPP1</it>, the -30G/A variant in the pancreatic β-cell specific promoter of Glucokinase, rs7903146 in <it>TCF7L2 </it>encoding transcription factor 7-like2, and rs7923837 in <it>HHEX </it>encoding the homeobox, hematopoietically expressed transcription factor.</p> <p>Results</p> <p><it>TCF7L2</it>-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06–1.47], <it>P </it>= 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13–2.16], <it>P </it>= 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms.</p> <p>Conclusion</p> <p>In the Tunisian population, <it>TCF7L2</it>-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.</p

    Human Alu Insertion Polymorphisms in North African Populations

    Get PDF
    Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis, and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis, and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period

    Common polymorphisms of calpain-10 and the risk of Type 2 Diabetes in a Tunisian Arab population: a case-control study

    No full text
    Abstract Background Genetic variations in the calpain-10 gene (CAPN10), in particular the at-risk diplotype (112/121), were previously implicated with increased risk of type 2 diabetes (T2D). Methods We examined the association of CAPN10 UCSNP-43 (rs3792267), UCSNP-19 (rs3842570), and UCSNP-63 (rs5030952) SNPs with T2D in 917 Tunisian T2D patients and 748 non-diabetic controls. CAPN10 genotyping was done by PCR-RFLP. Results Enrichment of UCSNP-19 2R (minor) allele and 2R/2R genotype was found in T2D patients; the allele and genotype distribution of UCSNP-43 and UCSNP-63 alleles and genotypes were not significantly different between patient groups and non-diabetic control subjects. Regression analysis demonstrated progressive increases in T2D risk in 3R/2R [OR (95% CI) = 1.35 (1.08 - 1.68)] and 2R/2R [OR (95% CI) = 1.61 (1.20 - 2.18)] genotypes. Of the six haplotypes detected, enrichment of haplotype 111 (UCSNP-43/UCSNP-19/UCSNP-63) was seen in patients (Pc = 0.034); the distribution of the other haplotypes was comparable between patients and control subjects; neither haplotype 211 nor haplotype 212 was observed. Furthermore, the frequency of all CAPN10 diplotypes identified, including the "high-risk diplotype (112/121) reported for Mexican-Americans and Northern Europeans, were comparable between patients and controls. Conclusions CAPN10 UCSNP-19 variant, and the 111 haplotype contribute to the risk of T2D in Tunisian subjects; no significant associations between CAPN10 diplotypes and T2D were demonstrated for Tunisians.</p

    Clinical Implications of Kr&uuml;pple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS

    No full text
    Polycystic ovary syndrome (PCOS) is a disorder with a symptomatic manifestation of an array of metabolic and endocrine impairments. PCOS has a relatively high prevalence rate among young women of reproductive age and is a risk factor for some severe metabolic diseases such as T2DM, insulin insensitivity, and obesity, while the most dominant endocrine malfunction is an excess of testosterone showing hyperandrogenism and hirsutism. MicroRNAs have been implicated as mediators of metabolic diseases including obesity and insulin resistance, as these can regulate multiple cellular pathways such as insulin signaling and adipogenesis. Genome-wide association studies during the last few years have also linked the Kr&uuml;pple-like family of transcription factors such as KLF14, which contribute in mechanisms of mammalian gene regulation, with certain altered metabolic traits and risk of atherosclerosis and type-2 DM. This study has characterized the biochemical and endocrine parameters in PCOS patients with a comprehensive serum profiling in comparison to healthy controls and further examined the influence of allelic variations for miRNAs 27a (rs895819 A &gt; G), 196a2 (rs11614913 C &gt; T), 423 (rs6505162C &gt; A), and transcription factor KLF14 (rs972283 A &gt; G) gene polymorphism on the risk and susceptibility to PCOS. The experimental protocol included amplification refractory mutation-specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. The results in this case&ndash;control study showed that most of the serum biomarkers, both biochemical and endocrine, that were analyzed in the study demonstrated statistically significant alterations in PCOS patients, including lipids (LDL, HDL, cholesterol), T2DM markers (fasting glucose, free insulin, HOMA-IR), and hormones (FSH, LH, testosterone, and progesterone). The distribution of Kr&uuml;ppel-like factor 14 rs972283 G &gt; A, miR-27a rs895819 A &gt; G, and miR-196a-2 rs11614913 C &gt; T genotypes analyzed within PCOS patients and healthy controls in the considered population was significant (p &lt; 0.05), except for miR-423 rs6505162 C &gt; A genotypes (p &gt; 0.05). The study found that in the codominant model, KLF14-AA was strongly associated with greater PCOS susceptibility (OR 2.35, 95% CI = 1.128 to 4.893, p &lt; 0.022), miR-27a-GA was linked to an enhanced PCOS susceptibility (OR 2.06, 95% CI = 1.165 to 3.650, p &lt; 0.012), and miR-196a-CT was associated with higher PCOS susceptibility (OR 2.06, 95% CI = 1.191 to 3.58, p &lt; 0.009). Moreover, allele A of KLF-14 and allele T of miR-196a2 were strongly associated with PCOS susceptibility in the considered population

    Clinical Implications of KrĂĽpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS

    No full text
    Polycystic ovary syndrome (PCOS) is a disorder with a symptomatic manifestation of an array of metabolic and endocrine impairments. PCOS has a relatively high prevalence rate among young women of reproductive age and is a risk factor for some severe metabolic diseases such as T2DM, insulin insensitivity, and obesity, while the most dominant endocrine malfunction is an excess of testosterone showing hyperandrogenism and hirsutism. MicroRNAs have been implicated as mediators of metabolic diseases including obesity and insulin resistance, as these can regulate multiple cellular pathways such as insulin signaling and adipogenesis. Genome-wide association studies during the last few years have also linked the Krüpple-like family of transcription factors such as KLF14, which contribute in mechanisms of mammalian gene regulation, with certain altered metabolic traits and risk of atherosclerosis and type-2 DM. This study has characterized the biochemical and endocrine parameters in PCOS patients with a comprehensive serum profiling in comparison to healthy controls and further examined the influence of allelic variations for miRNAs 27a (rs895819 A > G), 196a2 (rs11614913 C > T), 423 (rs6505162C > A), and transcription factor KLF14 (rs972283 A > G) gene polymorphism on the risk and susceptibility to PCOS. The experimental protocol included amplification refractory mutation-specific (ARMS)-PCR to detect and determine the presence of these polymorphic variants in the study subjects. The results in this case–control study showed that most of the serum biomarkers, both biochemical and endocrine, that were analyzed in the study demonstrated statistically significant alterations in PCOS patients, including lipids (LDL, HDL, cholesterol), T2DM markers (fasting glucose, free insulin, HOMA-IR), and hormones (FSH, LH, testosterone, and progesterone). The distribution of Krüppel-like factor 14 rs972283 G > A, miR-27a rs895819 A > G, and miR-196a-2 rs11614913 C > T genotypes analyzed within PCOS patients and healthy controls in the considered population was significant (p A genotypes (p > 0.05). The study found that in the codominant model, KLF14-AA was strongly associated with greater PCOS susceptibility (OR 2.35, 95% CI = 1.128 to 4.893, p p p < 0.009). Moreover, allele A of KLF-14 and allele T of miR-196a2 were strongly associated with PCOS susceptibility in the considered population
    corecore