6 research outputs found
Computational search for novel magnetic clusters with large magnetic anisotropy energy
The clusters of transition metal atoms often show high spin moments but generally are reactive with the environment. Passivation of the surface atoms can lead to more stable clusters. We have explored one such avenue for passivation in this work. We picked the As@Ni12@As20 cluster which in the neutral state has a magnetic moment of 3 μB. We doped this cluster with various numbers of Mn atoms by substituting Ni atoms. The substitutional doping leads to spin moments located on the Mn atoms. The doping leads to symmetry breaking and as a consequence the number of structural isomers and spin ordered states for each isomer becomes very large. We have investigated all possible ferromagnetic Mn doped clusters for a given number of dopants. Subsequently all the possible anti-ferromagnetic states for the lowest energy structure were examined. The results show that the encapsulation within the As20 cage stabilizes the clusters and the atomization energy of the clusters increases as the number of dopant increases. These clusters have small energy barrier for reversal of magnetization and also have rich configuration space with many low-lying spin states
A Mach-Zehnder Fabry-Perot hybrid fiber-optic interferometer operating at the thermal noise limit
Abstract A new type of interferometric fiber sensor based on a Mach-Zehnder Fabry-Perot hybrid scheme has been experimentally demonstrated. The interferometer combines the benefits of both a double-path configuration and an optical resonator, leading to record-high strain and phase resolutions limited only by the intrinsic thermal noise in optical fibers across a broad frequency range. Using only off-the-shelf components, the sensor is able to achieve noise-limited strain resolutions of 40 f ε / ( H z ) at 10 Hz and 1 f ε / ( H z ) at 100 kHz. With a proper scale-up, atto-strain resolutions are believed to be within reach in the ultrasonic frequency range with such interferometers
Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy
A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.). The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent). We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103
Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy
A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.). The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent). We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm −1 , which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 10 3