14 research outputs found

    Nipped in the Bud: COVID-19 Reveals the Malleability of STEM Student Self-Efficacy

    Get PDF
    When a global pandemic hits during a longitudinal study of biology student success, researchers can unearth rich information about student resilience. By sharing case studies from two demographically different midsized 4-year institutions, this article illustrates the aspects of student self-efficacy beliefs that were undercut by the shift to emergency remote instruction (ERI) in introductory biology courses in Spring 2020: agency and belonging. By assessing student predictions of exam performance and analyzing themes from 276 student narrative surveys, we highlight the power of a careful balance between cognitive and social interventions to help students recover. Students in this study showed a 50% loss of efficacy beliefs after ERI (midsemester) but were able to improve to at least 75% above starting efficacy beliefs after instructor interventions. Thus, we also show how academic efficacy is highly malleable and is mediated in relationships. In turn, we demonstrate a new assessment model that uses student narrative writing to reveal “invisible” threats to students’ perceptions of their capacity to succeed. Finally, we generalize from their findings to provide recommendations for effective strategies for supporting those students for whom every semester feels like a pandemic

    Visual categorization shapes feature selectivity in the primate temporal cortex

    No full text
    The way that we perceive and interact with objects depends on our previous experience with them. For example, a bird expert is more likely to recognize a bird as a sparrow, a sandpiper or a cockatiel than a non-expert. Neurons in the inferior temporal cortex have been shown to be important in the representation of visual objects; however, it is unknown which object features are represented and how these representations are affected by categorization training. Here we show that feature selectivity in the macaque inferior temporal cortex is shaped by categorization of objects on the basis of their visual features. Specifically, we recorded from single neurons while monkeys performed a categorization task with two sets of parametric stimuli. Each stimulus set consisted of four varying features, but only two of the four were important for the categorization task (diagnostic features). We found enhanced neuronal representation of the diagnostic features relative to the non-diagnostic ones. These findings demonstrate that stimulus features important for categorization are instantiated in the activity of single units (neurons) in the primate inferior temporal corte
    corecore