2,676 research outputs found

    T cell immunity rather than antibody mediates cross-protection against Zika virus infection conferred by a live attenuated Japanese encephalitis SA14-14-2 vaccine.

    Get PDF
    Zika virus (ZIKV) and Japanese encephalitis virus (JEV) are closely related to mosquito-borne flaviviruses. Japanese encephalitis (JE) vaccine SA14-14-2 has been in the Chinese national Expanded Program on Immunization since 2007. The recent recognition of severe disease syndromes associated with ZIKV, and the identification of ZIKV from mosquitoes in China, prompts an urgent need to investigate the potential interaction between the two. In this study, we showed that SA14-14-2 is protective against ZIKV infection in mice. JE vaccine SA14-14-2 triggered both Th1 and Th2 cross-reactive immune responses to ZIKV; however, it was cellular immunity that predominantly mediated cross-protection against ZIKV infection. Passive transfer of immune sera did not result in significant cross-protection but did mediate antibody-dependent enhancement in vitro, though this did not have an adverse impact on survival. This study suggests that the SA14-14-2 vaccine can protect against ZIKV through a cross-reactive T cell response. This is vital information in terms of ZIKV prevention or precaution in those ZIKV-affected regions where JEV circulates or SA14-14-2 is in widespread use, and opens a promising avenue to develop a novel bivalent vaccine against both ZIKV and JEV. KEY POINTS: • JEV SA14-14-2 vaccine conferred cross-protection against ZIKV challenge in mice. • T cell immunity rather than antibody mediated the cross-protection. • It provides important information in terms of ZIKV prevention or precaution

    A clinical study of the effects of lead poisoning on the intelligence and neurobehavioral abilities of children

    Get PDF
    BACKGROUND: Lead is a heavy metal and important environmental toxicant and nerve poison that can destruction many functions of the nervous system. Lead poisoning is a medical condition caused by increased levels of lead in the body. Lead interferes with a variety of body processes and is toxic to many organs and issues, including the central nervous system. It interferes with the development of the nervous system, and is therefore particularly toxic to children, causing potentially permanent neural and cognitive impairments. In this study, we investigated the relationship between lead poisoning and the intellectual and neurobehavioral capabilities of children. METHODS: The background characteristics of the research subjects were collected by questionnaire survey. Blood lead levels were detected by differential potentiometric stripping analysis (DPSA). Intelligence was assessed using the Gesell Developmental Scale. The Achenbach Child Behavior Checklist (CBCL) was used to evaluate each child’s behavior. RESULTS: Blood lead levels were significantly negatively correlated with the developmental quotients of adaptive behavior, gross motor performance, fine motor performance, language development, and individual social behavior (P < 0.01). Compared with healthy children, more children with lead poisoning had abnormal behaviors, especially social withdrawal, depression, and atypical body movements, aggressions and destruction. CONCLUSION: Lead poisoning has adverse effects on the behavior and mental development of 2–4-year-old children, prescribing positive and effective precautionary measures

    Bis(1-methyl-1-phenyl­ethyl) peroxide

    Get PDF
    In the crystal structure, the title compound (also called dicumyl peroxide), C18H22O2, lies on a center of symmetry. The COOC plane including the di­oxy group makes a dihedral angle of 79.10 (5)° with the phenyl ring. An inter­molecular C—H⋯π inter­action is observed between the phenyl groups

    Imidazolium 3-nitro­benzoate

    Get PDF
    In the title compound, C3H5N2 +·C7H4NO4 −, the benzene ring forms a dihedral angle of 40.60 (5)° with the imidizolium ring. The nitro­benzoate anion is approximately planar: the benzene ring makes dihedral angles of 3.8 (3) and 3.2 (1)° with the nitro and carboxyl­ate groups, respectively. In the crystal structure, the cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds, forming a zigzag chain along the b axis

    Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. <it>Leymus </it>is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of <it>Leymus </it>was assigned as NsXm, where Ns was presumed to be originated from <it>Psathyrostachys</it>, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of <it>Leymus</it>. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of <it>Leymus </it>based on a single-copy nuclear <it>Acc1 </it>gene.</p> <p>Results</p> <p>Two homoeologues of the <it>Acc1 </it>gene were isolated from nearly all the sampled <it>Leymus </it>species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) <it>Leymus </it>is closely related to <it>Psathyrostachys</it>, <it>Agropyron</it>, and <it>Eremopyrum</it>; (2) <it>Psathyrostachys juncea </it>is an ancestral Ns-genome donor of <it>Leymus </it>species; (3) the Xm genome in <it>Leymus </it>may be originated from an ancestral lineage of <it>Agropyron </it>and <it>Eremopyrum triticeum</it>; (4) the <it>Acc1 </it>sequences of <it>Leymus </it>species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5) North America <it>Leymus </it>species might originate from colonization via the Bering land bridge; (6) <it>Leymus </it>originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in <it>Leymus </it>during the period of 3.7-4.3 MYA and 1.7-2.1 MYA.</p> <p>Conclusion</p> <p><it>Leymus </it>species have allopolyploid origin. It is hypothesized that the adaptive radiation of <it>Leymus </it>species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in <it>Leymus</it>. Our results shed new light on our understanding of the origin of Xm genome, the polyploidization events and evolutionary history of <it>Leymus </it>that could account for the rich diversity and ecological adaptation of <it>Leymus </it>species.</p

    Using machine learning to explore the characteristics of eye movement patterns and relationship with cognition ability of Chinese children aged 1–6 years

    Get PDF
    Researchers have begun to investigate the relationship between eye movement characteristics of gaze patterns and cognitive abilities, and have attempted to use eye-tracking technology as a new method to evaluate cognitive abilities. Traditional eye movement analysis methods typically separate spatial and temporal information of eye movements, mostly analyze averaged data, and consider individual differences as noise. In addition, current eye movement studies on gaze patterns mostly involve adults, while research on infants and toddlers is limited with small sample sizes and narrow age ranges. It is still unknown whether the conclusions drawn from adult-based research can be applied to children. Consequently, eye movement research on gaze patterns in children is necessary. To address the concerns stated above, this study used the Hidden Markov machine learning method to model gaze patterns of 330 children aged 1–6 years while observing faces freely, and analyzed characteristics of eye movement gaze patterns. Additionally, we analyzed the correlation between gaze patterns of 31 toddlers aged 1–3 years and 37 preschoolers aged 4–6 years, and the different dimensions of cognitive abilities. The findings indicated that children exhibited holistic and analytic gaze patterns while observing different faces freely. More children adopted a holistic gaze pattern, and there were age-specific gaze pattern characteristics and regularities. Gaze patterns of toddlers may be correlated with their adaptive abilities and gaze patterns of preschoolers may be correlated with their visual space abilities. Specifically, toddlers aged 1–3 years showed a moderate negative correlation between the H-A scale and the adaptive dimension, while preschoolers aged 4–6 years showed a low negative correlation between the H-A scale and the visual space dimension. This study may provide new insights into the characteristics of children’s eye-movement gaze patterns during face observation, and potentially offer objective evidence for future research aimed at promoting the use of eye-tracking technology in the assessment of toddlers’ adaptive abilities and preschoolers’ visual space abilities in the field of face perception

    Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets

    Get PDF
    Background Current environmental pollution factors, particularly the distribution and diffusion of heavy metals in soil and water, are a high risk to local environments and humans. Despite striking advances in methods to detect contaminants by a variety of chemical and physical solutions, these methods have inherent limitations such as small dimensions and very low coverage. Therefore, identifying novel contaminant biomarkers are urgently needed. Methods To better track heavy metal contaminations in soil and water, integrated bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd, Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy metal pollutants. Subsequently, the accuracy and stability of the results screened were experimentally validated by quantitative PCR experiment. Results We obtained 168 differentially expressed genes (DEGs) which contained 59 up-regulated genes and 109 down-regulated genes through comparative bioinformatics analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively. GO analyses found that these DEGs were mainly related to responses to chemicals, responses to stimulus, responses to stress, responses to abiotic stimulus, and so on. KEGG pathway analyses of DEGs were mainly involved in the protein degradation process and other biologic process, such as the phenylpropanoid biosynthesis pathways and nitrogen metabolism. Moreover, we also speculated that nine candidate core biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) might be tightly correlated with the response or transport of heavy metals. Finally, experimental results displayed that these genes had the same expression trend response to different stresses as mentioned above (Cd, Pb and Cu) and no mentioned above (Zn and Cr). Conclusion In general, the identified biomarker genes could help us understand the potential molecular mechanisms or signaling pathways responsive to heavy metal stress in plants, and could be applied as marker genes to track heavy metal pollution in soil and water through detecting their expression in plants growing in those environments

    Chemotherapy Alters the Phylogenetic Molecular Ecological Networks of Intestinal Microbial Communities

    Get PDF
    Intestinal microbiota is now widely known to play key roles in nutritional uptake, metabolism, and regulation of human immune responses. There are multiple studies assessing intestinal microbiota changes in response to chemotherapy. In this study, microbial phylogenetic molecular ecological networks (pMENs) were firstly used to study the effects of chemotherapy on the intestinal microbiota of colorectal cancer (CRC) patients. Based on the random network model, we demonstrated that overall network structures and properties were significantly changed by chemotherapy, especially in average path length, average clustering coefficient, average harmonic geodesic distance and modularity (P &lt; 0.05). The taxa in the module tended to co-exclude rather than co-occur in CRC patient networks, indicating probably competition relationships. The co-exclude correlations were decreased by 37.3% from T0 to T5 in response to chemotherapy. Significantly negative correlations were observed in positive/negative OTU degree and tumor markers (P &lt; 0.05). Furthermore, the topological roles of the OTUs (module hubs and connectors) were changed with the chemotherapy. For example, the OTU167, OTU8, and OTU9 from the genera Fusobacterium, Bacteroides, and Faecalibacterium, respectively, were identified as keystone taxa, which were defined as either “hubs” or OTUs with highest connectivity in the network. These OTUs were significantly correlated with tumor markers (P &lt; 0.05), suggesting that they probably were influenced by chemotherapy. The pMENs constructed in this study predicted the potential effects of chemotherapy on intestinal microbial community co-occurrence interactions. The changes may have an effect on the therapeutic effects. However, larger clinical samples are required to identify the conclusion

    New Cytotoxic Oxygenated Sterols from the Marine Bryozoan Cryptosula pallasiana

    Get PDF
    Six new sterols (1-6), together with seven known sterols (7-13), were isolated from the CCl4 extract of the marine bryozoan Cryptosula pallasiana, four (3-6) of which have already been reported as synthetic sterols. This is the first time that these compounds (3-6) are reported as natural sterols. The structures of the new compounds were determined on the basis of the extensive spectroscopic analysis, including two-dimensional (2D) NMR and HR-ESI-MS data. Compounds 1-4, 7 and 10-13 were evaluated for their cytotoxicity against HL-60 human myeloid leukemia cell line, and all of the evaluated compounds exhibited moderate cytotoxicity to HL-60 cells with a range of IC50 values from 14.73 to 22.11 µg/mL except for compounds 12 and 13
    corecore