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Researchers have begun to investigate the relationship between eye movement

characteristics of gaze patterns and cognitive abilities, and have attempted to

use eye-tracking technology as a new method to evaluate cognitive abilities.

Traditional eye movement analysis methods typically separate spatial and

temporal information of eye movements, mostly analyze averaged data, and

consider individual differences as noise. In addition, current eye movement

studies on gaze patterns mostly involve adults, while research on infants and

toddlers is limited with small sample sizes and narrow age ranges. It is still

unknown whether the conclusions drawn from adult-based research can be

applied to children. Consequently, eye movement research on gaze patterns in

children is necessary. To address the concerns stated above, this study used the

Hidden Markov machine learning method to model gaze patterns of 330 children

aged 1–6 years while observing faces freely, and analyzed characteristics of eye

movement gaze patterns. Additionally, we analyzed the correlation between gaze

patterns of 31 toddlers aged 1–3 years and 37 preschoolers aged 4–6 years,

and the different dimensions of cognitive abilities. The findings indicated that

children exhibited holistic and analytic gaze patterns while observing different

faces freely. More children adopted a holistic gaze pattern, and there were age-

specific gaze pattern characteristics and regularities. Gaze patterns of toddlers

may be correlated with their adaptive abilities and gaze patterns of preschoolers

may be correlated with their visual space abilities. Specifically, toddlers aged

1–3 years showed a moderate negative correlation between the H-A scale

and the adaptive dimension, while preschoolers aged 4–6 years showed a low

negative correlation between the H-A scale and the visual space dimension.
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This study may provide new insights into the characteristics of children’s eye-

movement gaze patterns during face observation, and potentially offer objective

evidence for future research aimed at promoting the use of eye-tracking

technology in the assessment of toddlers’ adaptive abilities and preschoolers’

visual space abilities in the field of face perception.
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1 Introduction

Face perception (Ward and Bernier, 2021) is a fundamental
cognitive process that involved in the processing of faces,
which allows children to obtain important social information
such as gender, age, emotion, and race, facilitating their social
communication and adaptation to their environment. Eye tracking
techniques (Gredebäck et al., 2010; Carter and Luke, 2020), owing
to their advantages of objective quantification, non-invasiveness,
and ease of operation, have emerged as a promising tool to
characterize children’s face perception. Given that children’s brains
are still undergoing development, it remains unclear whether the
findings derived from adults are generalizable to children.

Gaze patterns, belonging to the category of facial processing
mechanisms, are an important branch of face perception research.
Researchers from various fields have actively explored the gaze
patterns in the face perception process for decades (Mertens et al.,
1993; Walker-Smith et al., 2013; Johnson et al., 2015). However,
current eye movement analysis methods for gaze patterns primarily
rely on analyzing average data, and individual differences are
treated as noise. Nevertheless, studies have demonstrated that
eye movement behavior exhibits significant individual differences
during cognitive tasks (Kelly et al., 2011; Peterson and Eckstein,
2013; Kanan et al., 2015). Hence, appropriate eye movement
analysis methods are necessary to reflect individual differences.
Furthermore, most eye movement analysis methods cannot reflect
eye movement temporal-spatial features (Henderson et al., 2005;
Caldara and Miellet, 2011; Wang et al., 2020). With advancements
in computer algorithms, machine learning provides a new and
powerful method for eye movement research on gaze patterns (Lim
et al., 2022).

In eye movement tasks, the current fixation location of eyes
is dependent on the preceding fixation location, making eye
movement a time series. Hidden Markov Model (HMM) is a
statistical model for analyzing time series in machine learning, thus
eye movement behavior in visual tasks can be regarded as an HMM
random process (Chuk et al., 2014). Studies have indicated that
HMM is appropriate for cognitive psychology research involving
limited trials or time-intensive data collection, providing a new
opportunity for addressing individual differences and spatial -
temporal issues in eye movement data analysis (Chuk et al., 2020).
Using the HMM method can provide a better understanding of
the eye movement process (Hsiao et al., 2021). Previous research
(Chuk et al., 2014, 2020; Hsiao et al., 2021) has shown that,
according to the transition differences among fixation locations and

spatial distribution differences, adults exhibit two representative
gaze patterns when gazing at faces: the holistic gaze pattern,
characterized by fixation on the midline of the face, and the analytic
gaze pattern, which focuses more on the area between the eyes and
mouth. However, it is currently unclear how many representative
gaze patterns exist in children and what specific characteristics each
pattern possesses. Therefore, it is necessary to conduct eye-tracking
studies to explore gaze patterns in children.

Researchers have begun to explore the relationship between
eye movement characteristics and cognitive abilities, and have
attempted to use eye tracking technology as an effective method
for assessing cognitive abilities in recent years (Hayes and Petrov,
2016; Hayes and Henderson, 2017; Laurence et al., 2018). In a
study involving 34 young adults and 34 older adults (Chan et al.,
2018), the relationship between eye movement patterns during
face recognition and cognition was analyzed using the HMM.
Participants who exhibited an analytic gaze pattern performed
better in cognitive tasks regardless of age differences, compared to
those who exhibited a holistic gaze pattern. However, it remains
unclear whether eye movement patterns during face perception in
children are associated with cognitive abilities. Given the plasticity
of children’s brains and cognitive abilities during childhood
(Kolb et al., 2017), studying the relationship between cognitive
abilities and gaze patterns in children can help to understand the
developmental patterns and mechanisms in children, providing
objective evidence for eye tracking technology as a new method for
assessing cognitive abilities in children.

Taken together, to investigate the characteristics of children’s
eye-movement gaze patterns, we recruited 816 Chinese children
aged 1–6 years to participate in an eye-tracking face perception
task and their gaze patterns were modeled by HMM. This is the
first time, as far as we are aware, that eye movement characteristics
of gaze patterns in children aged 1–6 have been reported.
Additionally, we recruited 50 children aged 1–3 and 45 children 4–
6 to participate in eye-tracking tasks and cognitive assessments to
explore the relationship between gaze patterns and cognition.

2 Materials and methods

2.1 Experiment 1

2.1.1 Participants
The minimum number of participants required for this study

was computed using G∗Power 3.1 (Faul et al., 2009), assuming
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an alpha level of 0.05, a power of 0.90, a medium effect size of
0.25, and 8 groups to be tested using the F-test, resulting in a
required minimum of 338 participants. The final targeted sample
size of 796 was calculated, taking into account a 15% rate of loss
to follow-up and approximately 50% of the total data set meeting
the inclusion criteria. A total of 816 children (423 boys) aged 1–
6 years were recruited for this study from June 2020 to June 2022.
The inclusion criteria were as follows: A. birth gestational week
≥37 weeks and birth weight ≥2500 g; B. age 1–6 years; C. passing
the physical vision screening and visual development (including
corrected visual acuity) was at the same age developmental level;
D. no serious physical or neurologic disorders occurred after birth;
E. no neurodevelopmental disorders. All children were physically
evaluated by two pediatricians. Ultimately, 330 children (158 boys)
were analyzed due to 486 exclusions resulting from failure to
complete the eye movement task or poor eye movement data
quality (see the eye movement data analysis section for details).

2.1.2 Materials
In this experiment, we used three static photos of Chinese faces

depicting a female, child, and male as stimuli (Figure 1). All images
were standardized to the same shape and size (width: 900 pixels,
18.8◦ view, height 940 pixels, 22.4◦ view). Each face image was
presented with a neutral expression and oriented in a forward-
looking position in a random order. Eye movement was tracked
using the Tobii Eye Tracking IS4 Large Peripheral Eye Tracker,
with a sampling rate of 90 Hz, and data recording was controlled
through the use of the Psychtoolbox and Tobii Analytics Software
Development Kit on the Matlab platform. Binocular tracking was
used to detect eye movement, with the screen resolution set to 1920
px× 1080 px.

2.1.3 Procedure
The distance between the children and the LCD monitor

was about 75 cm. The toddlers were positioned on their parent’s
laps, with their parents wearing eye shields to prevent any visual
interference, while preschoolers were seated individually in front of
the eye tracker on designated chairs. Before each trial, an attention-
getter, in the form of a “+,” was presented at the center of the
monitor to reduce involuntary movements that may occur, such as
tremors, drift, and microsaccades, and to enhance stable fixation
(Thaler et al., 2013). Subsequently, each face was shown at the
center of the monitor for 8,000 ms, and children were instructed
to observe them at will. Children were blinded to the results of the
eye tracking assessment.

FIGURE 1

Sample faces as stimuli: (A) a female face (B) a child’s face (C) a
male face.

Before data collection, the children’s eye movements were
calibrated through two three-point calibration procedures. During
calibration, a blue dot with a 1-cm diameter was used, and the
children were instructed to maintain fixation on the dot until it
burst and disappeared. The calibration process was repeated when
necessary to guarantee good mapping was achieved at all six test
positions, each with a visual angle of less than 1◦.

2.2 Experiment 2

We conducted Experiment 2 to investigate whether the
representative gaze models derived from Experiment 1 could
potentially be used to quantify the eye-movement patterns of new
child participants for cognitive screening. The minimum number
of participants required for Experiment 2 was computed using
G∗Power 3.1, assuming an alpha level of 0.05, a power of 0.80, a
medium effect size of 0.32, and 2 groups to be tested using the
t-test, resulting in a required minimum of 62 participants. The final
targeted sample size of 91 was calculated, taking into account a
15% rate of loss to follow-up and approximately 80% of the total
data set meeting the inclusion criteria. A total of 95 children (50
toddlers aged 1–3 years and 45 preschoolers aged 4–6 years) were
recruited for Experiment 2 from June 2020 to June 2022 (see section
“2.1.1. Participants” for inclusion criteria). After performing the
same eye movement task, each child completed developmental and
behavioral assessments. The developmental assessments included
the Gesell Developmental Diagnostic Schedule (GDDS) and the
Wechsler Preschool and Primary Scale of Intelligence, Fourth
Edition (WPPSI-IV), used for the toddler and preschooler groups,
respectively, to examine the relationship between eye movement
gaze patterns and various dimensions of cognitive ability. In the
toddler group, 31 children (mean age, 25.3 months; SD, 8.3 months,
16 boys) were included in the final analysis, and a total of 37
participants (mean age, 49.20 months; SD, 8.40 months, 16 boys)
from the preschooler group underwent the final analysis.

1. Gesell Developmental Diagnostic Schedule (GDDS) (Ball,
1977) evaluates the level of development of a child’s abilities in
different systems, including four functional areas: adaptive, motor
(gross and fine motor), verbal, and social areas. The results are
expressed in terms of the developmental quotient (DQ).

(1) Adaptive: Adaptive behavior is the most important area
that reflects the overall development status of children. It involves
the organization of stimuli, perception of their relationships,
decomposing stimuli into their components, and reassembling
these components in a meaningful way. Adaptive behavior is the
precursor to future “cognition” as it allows children to apply past
experiences to solve new problems.

(2) Motor: Gross motor behavior encompasses postural
reactions, head control, sitting, standing, crawling, walking, and
more. Fine motor behavior involves actions such as grasping,
gripping, and manipulating objects using the hands and fingers.

(3) Verbal: Language behavior includes imitation and
comprehension of others’ language.

(4) Social: Personal-social behavior includes infants’ individual
responses to the social and cultural context they live in. The
response to society and the environment encompasses children’s
abilities, attitudes, their eating abilities, independence in play,
cooperation, and their responses to training and social customs.
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2. Wechsler Preschool and Primary Scale of Intelligence, Fourth
Edition (WPPSI-IV) (Wechsler, 2012) includes total scale scores
and five subscales—verbal comprehension, visual space, perceptual
reasoning, working memory, and processing speed.

(1) Verbal comprehension refers to the ability of subjects
to accurately summarize, understand, and express language
information through common sense and scores obtained from
analogical reasoning tests.

(2) Visual space refers to the subjects’ ability to analyze and
organize pattern materials, spatial perception, and visual-motor
integration skills, as measured by their scores on block assembly
and puzzle tests.

(3) Perceptual reasoning encompasses the subjects’ higher-level
thinking abilities, including abstract generalization and reasoning
based on picture materials, which are reflected in their scores on
matrix reasoning and picture concepts tests.

(4) Working Memory refers to the subjects’ short-term memory
abilities for pattern materials, as indicated by their scores on picture
memory and animal house tests.

(5) Processing Speed refers to the subjects’ ability to quickly
scan and distinguish visual patterns, physically marking them, as
determined by their scores on bug search and cancelation tests.

2.3 Analysis of eye-movement data

2.3.1 Preprocessing
Trials with more than 50% missing gaze data (a total screen

time of less than 4000 ms) were considered unreliable and thus
were excluded from the analysis. Missing gaze data in the other
trials were filled in by linear interpolation, with a maximum gap
length of 75 ms, which was regarded as an eye blink (Olsen, 2012).
The average gaze position of the left and right eyes was used as an
analytical unit. Regions of interests (ROIs) were not predefined in
this research. We computed the total screen time by summing up
all gaze durations on the entire screen.

2.3.2 Hidden Markov model
We used the EMHMM method to quantitatively measure eye-

movement patterns in a child (Chuk et al., 2014, 2020; Hsiao
et al., 2021). In the EMHMM approach, the eye-movement
pattern of each child is summarized using the HMM based on
personalized ROIs and transition probabilities among ROIs, given
that the hidden states of the HMM correspond to these ROIs.
The parameters of HMMs, including the Gaussian ROIs, the
transition matrix, and the vector of priors (which indicate the
probabilities that a fixation sequence starts from the ellipses),
were simultaneously estimated using the Variational Bayesian
Expectation Maximization algorithm, with the number of ROIs
automatically determined from a preset range via the variational
Bayesian approach. The HMMs of all children could then be
clustered into subgroups based on their similarities by using
Variational Hierarchical Expectation Maximization (VHEM), and
a representative HMM model could be produced for each
subgroup. The eye-movement pattern of each child could be
quantitatively evaluated to determine the likelihood of the
generated representative HMMs: the higher the likelihood, the
more similar the representative HMMs.

In this study, we aimed to determine the optimal number
of ROIs for each participant by training six HMMs, with ROIs
ranging in number from 1 to 6. The model with the highest log-
likelihood was selected. To ensure robustness of the results, each
HMM was trained 100 times with unique initial Gaussian ROIs,
which prevented convergence to local maximum. Subsequently, we
generated a holistic and analytic HMM model representative of the
data. To assess the similarity of the eye movement pattern between
the child and the representative models, we calculated the H-A scale
for each child by subtracting the log-likelihood of the child’s eye
movement data from each of the two models, and normalizing the
result by its sum (Chan et al., 2018):

H−Ascale =
Holisticlog−likelihood−Analyticlog−likelihood∣∣Holisticlog−likelihood∣∣+ |Analyticlog−likelihood|

A positive value indicates a holistic pattern, whereas a negative
value indicates an analytic pattern. We then examined the
correlation between the H-A scale and developmental assessments
in Experiment 2. The schematic diagram of the HMM is presented
in Figure 2.

3 Results

3.1 Experiment 1

Table 1 presents the basic profiles of children in each age group
before and after data cleaning in Experiment 1. Ultimately, 330
children (158 boys and 172 girls, mean age: 46.40 months; SD:
19.59 months) were included in the analysis.

Figure 3 presents the representative HMMs of the two common
patterns discovered via clustering by HMM similarities. The
patterns in Figures 3A, C, E resemble the holistic patterns: a scan
path typically starts at the facial contour (the area between the eyes,
nose, and mouth) or the entire face and surrounding area, and
then lingering around the same area. The patterns in Figures 3B,
D, F resemble analytic patterns: a scan path is typically switched
between the eyes and the center of the face, with more frequent
gazing between the eyes.

Table 2 compares the differences between two representative
HMMs using Kullback-Leibler divergence estimation. The results
indicate that there are significant differences between the two
representative HMMs. Additionally, a chi-square test revealed that
a larger number of children exhibited holistic gaze patterns when
gazing at a female face (χ2 = 14.01, P < 0.001), a child’s face
(χ2 = 85.53, P < 0.001), and a male face (χ2 = 62.84, P < 0.001).

Figure 4 shows the scatterplots and boxplots of the H-A scale
for each age group of children free-viewing a female face, a child’s
face, and a male face. The one-way ANOVA on the H-A scale of
viewing different faces indicates no significant difference in the H-A
scale among age groups (female face, F = 0.96, P = 0.46; child’s face,
F = 0.69, P = 0.68; male face, F = 0.79, P = 0.60). To understand
how face type and age affect eye movement patterns in children (H-
A scale), we performed an 8 × 3 between-subjects ANOVA on the
H-A scale (i.e., 8 age groups [1Y, 1.5Y), [1.5Y, 2Y), [2Y, 3Y), [2.5Y,
3Y), [3Y, 4Y), [4Y, 5Y), [5Y, 6Y), [6Y, 7Y) groups) × 3 (face type:
female, child, male). The results showed the main effect of face types
on the H-A scale (F = 42.07, P < 0.01). Meanwhile, the age groups
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FIGURE 2

(A) Example of an HMM summarizing the eye movement pattern of a child during a free-viewing task. Ellipses depict the ROIs as 2D Gaussian
distributions. The table shows transition probabilities among the ROIs. Priors show the probabilities that a fixation sequence starts from the ellipse. In
this example, the child has a 66% probability of viewing the female face with fixation in the red region and 34% with fixation in the green region. After
fixation in the red region, the subsequent fixation has a 42% probability to stay in the red region and 58% to switch to the green region.
(B) Illustration of the Variational Hierarchical Expectation Maximization clustering algorithm: The clustering algorithm groups S1 and S2 form Group
1, and S3 and S4 form Group 2. Group 1 and Group 2 HMMs can then be used to quantify the eye movement pattern and derive from it the data
likelihood of the child given Group 1 HMM or Group 2 HMM. (C) Example of the generated plot showing the analytic and holistic representative
models (top-left and top-right) and the H-A scale (top-center). A small number of children on the scale are plotted on the bottom. These
corresponding values are highlighted on the H-A scale plot with red circles. Positive HA values indicate a more holistic pattern, whereas negative HA
values indicate a more analytic pattern.

TABLE 1 General profile of children in Experiment 1 before and after data
cleaning, including the number of children and the age of children
in each age group.

Before data cleaning After data cleaning

N (M/F) Age (months),
mean, SD

N (M/F) Age (months),
mean, SD

1Y, 1.5Y) 152 (77/75) 12.67 (2.05) 29 (12/17) 12.89 (2.32)

1.5Y, 2Y) 70 (30/40) 19.67 (2.23) 23 (8/15) 19.96 (2.48)

2Y, 2.5Y) 74 (35/39) 25.44 (1.82) 21 (10/11) 25.34 (2.03)

2.5Y, 3Y) 77 (44/33) 31.21 (1.74) 32 (16/16) 30.71 (1.99)

3Y, 4Y) 140 (69/71) 40.80 (4.00) 50 (23/27) 41.41 (4.19)

4Y, 5Y) 141 (85/56) 53.45 (3.88) 73 (43/30) 53.02 (3.61)

5Y, 6Y) 121 (65/56) 66.06 (3.57) 70 (34/36) 66.50 (3.46)

6Y, 7Y) 41 (18/23) 73.97 (2.53) 32 (12/20) 73.96 (2.39)

N, number; M, male; F, female; SD, standard deviation.

exerted no significant effect on the H-A scale (F = 1.44, P = 0.19).
No significant interaction was found between face types and age
groups (F = 0.50, P = 0.93). This result indicates that the H-A scale
of different faces varied in essentially the same pattern and that each
scale was at its own level as the age group level changed.

One of the questions put forward is whether the eye movement
pattern would change with age. To address this concern, we

explored the proportion of eye movement patterns adopted by
the children when viewing different faces. The bar charts in
Figure 5 represent the proportions of the eye-movement patterns
(analytic and holistic) adopted by children (aged 1–6 years) free-
viewing different faces. We conducted a chi-square test on the
distribution of the eye-movement patterns adopted by children
viewing different faces. No significant differences in the distribution
of eye movement patterns were found among the age groups for
female faces and child’s faces (female face: χ2 = 4.11, P = 0.77; child’s
face: χ2 = 4.90, P = 0.67). While the distribution of eye movement
pattern proportion was significantly different among the age groups
for male faces (male face: χ2 = 19.45, P < 0.01). In addition,
we performed chi-square tests on the distribution of the eye-
movement patterns (holistic and analytic) adopted by the children
viewing different faces. Significant differences in the distribution of
eye-movement patterns when viewing female faces were found in
the [3Y, 4Y) and [6Y, 7Y) groups ([3Y, 4Y): χ2 = 6.48, P = 0.01;
[6Y, 7Y): χ2 = 4.50, P = 0.03). Similarly, significant differences in
the distribution of eye-movement patterns during free-viewing of
the child’s face were found in the six age groups, except for the
[1.5Y, 2Y) and [2Y, 2.5Y) groups ([1Y, 1.5Y): χ2 = 9.97, P < 0.01;
[2.5Y, 3Y): χ2 = 10.13, P < 0.01; [3Y, 4Y): χ2 = 20.48, P < 0.01;
[4Y, 5Y): χ2 = 18.75, P < 0.01; [5Y, 6Y): χ2 = (18.51, P < 0.01; [6Y,
7Y): χ2 = 8.00, P < 0.01). Significant difference was indicated in
the distribution of eye-movement patterns in the [3Y, 4Y) to [6Y,
7Y) groups viewing the male face ([3Y, 4Y): χ2 = 13.52, P < 0.01;
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FIGURE 3

Representative HMMs discovered via clustering by HMM similarities. (A) holistic pattern of the female face, (B) analytic pattern of the female face,
and (C) holistic pattern of the child’s face, (D) analytic pattern of the child’s face, (E) holistic pattern of the male face, and (F) analytic pattern of the
male face. Each representative HMM included two regions of interest (ROIs) indicated by different colors. The smaller images show the assignment
of actual fixations to different ROIs. The transition probabilities of eye movements among the ROIs were summarized in the transition matrix.

[4Y, 5Y): χ2 = 35.63, P < 0.01; [5Y, 6Y): χ2 = 18.51, P < 0.01;
6-year-old group: χ2 = 4.50, P = 0.03). To understand how face
types and age groups affect the eye movement patterns of the
children, we performed an 8 age groups × 3 face types between-
subjects ANOVA (8 age groups: [1Y, 1.5Y), [1.5Y, 2Y), [2Y, 2.5Y),
[2.5Y, 3Y), [3Y, 4Y), [4Y, 5Y), [5Y, 6Y), [6Y, 7Y)) × 3 (face types:
female, child, male) between-subjects ANOVA. The results showed
that face type and age group were the main factors affecting eye
movement patterns (face types: F = 15.16, P < 0.01; age groups:
F = 3.01, P < 0.01). No significant interaction was identified
between face type and age group (F = 1.55, P = 0.08). This result
suggests that the change in eye-movement patterns is similar for
different faces as the age group advances, and each is on its own
trajectory.

3.2 Experiment 2

In the toddler group, 31 children (mean age, 25.3 months; SD,
8.3 months, 16 boys) were included in the final analysis, and a
total of 37 participants (mean age, 49.20 months; SD, 8.40 months,
16 boys) from the preschooler group underwent the final analysis.
Table 3 presents descriptive statistics of eye movement hidden
Markov models (HMMs) and developmental assessments after data
cleaning in Experiment 2.

Figure 6A shows the representative eye movement patterns
obtained by age group. Figure 6B shows the representative HMMs
of the two common patterns discovered by clustering based on
HMM similarities. The two representative HMMs are significantly
different, as determined by Kullback–Leibler divergence estimation

TABLE 2 Compares the difference between two representative HMMs.

Holistic Analytic χ2 P

Female face N 199 131 14.01 <0.001

d 0.23 2.46

t 3.31 28.12

P <0.001 <0.001

Child face N 248 81 85.53 <0.001

d 0.10 2.31

t 1.51 20.82

P <0.001 <0.001

Male face N 237 93 62.84 <0.001

d 0.58 2.71

t 8.98 26.14

P <0.001 <0.001

The variable ‘d’ in the table represents the Kullback-Leibler (KL) divergence, which is a
measure of the difference between probability distributions. A KL divergence of 0 means
that the two distributions (HMMs) are the same. The t-statistic in the table is calculated by
conducting a paired t-test on two lists of log-likelihoods to determine whether the average
log-likelihood difference is significantly different from 0. The χ2 statistic at the right of the
table is calculated based on a chi-square test conducted to compare the number of participants
with holistic and analytical patterns. N, number; d, KL divergence.

(using data from the holistic HMMs of the female face, t(55) = 4.13,
P < 0.001, d = 0.55; using data from the analytic HMMs of the
female face, t(11) = 12.96, P < 0.001, d = 3.74; using data from the
holistic HMMs of the child’s face, t(31) = 6.77, P < 0.001, d = 1.20;
using data from the analytic HMMs of the child’s face, t(35) = 2.41,
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FIGURE 4

Scatterplots showing the H-A scale for each age group of 330 children aged 1–6 years free-viewing (A) a female face, (B) a child’s face, and (C) a
male face. The H-A scale is defined as the difference in the log-likelihoods of the eye movement data of the child (generated using the
representative holistic and analytic HMM models), divided by the sum of the two log-likelihoods. Dashed lines depict the average of the H-A scale
for all children. The green rhombus indicates the average H-A scale for each age group. The boxplots show the median, range, and first/third
quartiles. The notch ranges indicate 95% confidence intervals around the median. The F statistic was obtained using one-way ANOVA conducted to
compare the H-A scale across age groups.

FIGURE 5

Bar charts showing the proportions of eye movement patterns (analytic and holistic) for each age group of children (aged 1–6 years) free-viewing
(A) a female face, (B) a child’s face, and (C) a male face. The proportion of the eye-movement pattern is determined by the number of children
adopting the holistic pattern (or analytic pattern) for each group, divided by the total number of children belonging to that particular age group. The
blue bar indicates the holistic proportion; the red bar indicates the analytic proportion. The χ2 statistic at the bottom of the figure is calculated
based on a chi-square test conducted to compare the proportions of holistic and analytical patterns across age groups. *At the top of the bar
indicates the type of chi-square test performed to compare the proportions of holistic and analytic patterns in each age group (*indicates P < 0.05,
**indicates P < 0.01).

P = 0.01, d =−0.39; using data from the holistic HMMs of the male
face, t(30) = 3.80, P < 0.001, d = 0.68; using data from the analytic
HMMs of the male face, t(36) = 6.62, P < 0.001, d = 1.09).

Figure 7 presents the correlation analysis of the H-A scale
with GDDS in the toddler group. The relationship between eye-
movement patterns and adaptive dimension (r =−0.520, P < 0.01)
is moderate negative correlation in the toddler group, as shown in
Figure 8.

We conducted a Spearman correlation analysis between the
H-A scale and the standard scores of various dimensions in WPPSI-
IV for preschool-aged children. Results showed a significant
negative correlation (r = −0.36, P = 0.03) between the mean
values of H-A scale and visual space standard scores, whereas
no significant correlation was found (P > 0.05) among other
indicators. Please see Figures 9, 10 for further details.

4 Discussion

4.1 Children exhibit two gaze patterns
when gazing at faces

In this study, we used an HMM-based approach to investigate
eye-movement patterns in children aged 1–6 years during a free-
viewing task. The findings revealed two distinct gaze patterns,
holistic and analytical, in children while they observed faces
(Figures 3, 6B). Notably, these patterns differed significantly.
The scan path of the holistic gaze pattern typically starts at
the facial contour or the entire face and surrounding area, and
then lingering around the same area. While the analytic gaze
pattern, typically switches between the eyes and the center of the
face, with more looking time toward the eyes (Supplementary
Figure 2). Correspondingly, a study focused on eye movement
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TABLE 3 Summary of the clinical characteristics of children
in Experiment 2.

Mean (SD)
toddler (N = 31)

Mean (SD)
preschooler (N = 37)

M/F 16/15 16/21

Age, months 25.3 (8.3) 49.2 (8.4)

Eye movement patterns (N)

Female face
(H/A)

26/5 30/7

Child’s face
(H/A)

19/12 13/24

Male face (H/A) 13/18 18/19

H-A scale

Female face −0.0175 (0.0342) 0.0133 (0.0399)

Child’s face 0.0145 (0.0242) 0.0019 (0.0275)

Male face −0.0031 (0.0286) −0.0078 (0.0248)

Mean face −0.0020 (0.0162) 0.0025 (0.0184)

GDDS (DQ)

Adaptive 97 (7) ——

Gross motor 89 (8) ——

Fine motor 95 (10) ——

Verbal 95 (13) ——

Social 96 (10) ——

WPPSI-IV (standard score)

Total score —— 113 (11)

Verbal
comprehension

—— 114 (13)

Visual space —— 110 (12)

Fluid reasoning —— 109 (10)

Working
memory

—— 107 (9)

Values are presented as means (standard deviations are noted in parentheses unless
otherwise noted). M, male; F, female; H, holistic; A, analytic; GDDS, Gesell Developmental
Diagnostic Schedule; DQ, developmental quotient; WPPSI-IV, Wechsler Preschool and
Primary Scale of Intelligence | Fourth Edition.

patterns in adults found that two gaze patterns were exhibited by
young and older adults when gazing at faces (Chuk et al., 2014).
This observation aligns with our study’s outcomes. According
to studies on adults, the typical holistic gaze pattern of adults
typically starts from the nose or mouth area, then remains near
that area. The analytical gaze pattern usually starts from the face’s
vertical midline, and then shifts evenly among the midline, left
eye, and right eye, with more frequent gaze between the eyes.
Each pattern contains three ROIs that partially differed from our
study’s conclusions. Our research found that children’s holistic
gaze pattern predominantly starts by looking at the whole face,
whereas the analytical gaze pattern’s primary focus is both eyes.
Each representative gaze pattern has two ROIs. Therefore, our
study proposes that despite children and adults having both holistic
and analytical gaze patterns, there are dissimilarities between each
pattern’s specificities in adults.

We compared the gaze patterns obtained from age-based
(Figure 6A) and HMM similarity-based (Figure 6B) methods.

Our results revealed that the holistic and analytical gaze patterns
obtained from the HMM similarity-based method showed distinct
spatial separation within facial features. Since children in both age
groups had both holistic and analytical gaze patterns, this difference
was not easily observed in the gaze patterns obtained by age-
group-based method, which also demonstrated the power of HMM
machine learning method.

4.2 More children adopt the holistic gaze
pattern

Our results indicate that more children exhibit the holistic
pattern when gazing at faces (Figure 5), which is a novel discovery
as it has not been reported in previous research. In a separate
study on eye-movement patterns of adults (Chan et al., 2018), it
was found that young adults are prone to adopting the analytical
gaze pattern, whereas older adults are more likely to exhibit the
holistic gaze pattern while observing faces. Conversely, our research
indicates that children tend to employ the holistic gaze pattern,
primarily, when viewing faces. Therefore, this may suggest that the
facial processing strategies in children aged 1–6 years may still be at
the developmental phase and have not fully matured.

4.3 Children’s gaze patterns on faces
show some characteristics with age

The results of this study show that the ratio distribution
of children in each age group using holistic and analytical
gaze patterns remains relatively stable with age (Figures 4, 5).
Multivariate ANOVA was conducted to understand how face type
and age group influence eye-movement patterns in children. On
the basis of the results, face type was identified as the main
factor affecting eye-movement patterns and the H-A scale, and no
significant interaction was found between face type and age group.
The results suggest that changes in eye-movement patterns and
H-A scale follow essentially the same trajectory for different faces
as the age-group advances, and each is at a different level.

4.4 Gaze patterns may be correlated with
toddlers’ adaptive dimension and
preschoolers’ visual space dimension

In Experiment 2, we examined how eye-movement patterns
are associated with the subdomains of scales in children aged 1–
6 years. To be more specific, toddlers aged 1–3 years showed
a moderate negative correlation between the H-A scale and the
adaptive dimension (r =−0.520, P < 0.01) (Figures 7, 8), implying
a better adaptive performance associated with the analytical gaze
pattern. While preschoolers aged 4–6 years showed a low negative
correlation between the H-A scale and the visual space (r =−0.360,
P = 0.03) (Figures 9, 10), indicating a better visual space scores
of adopting an analytical gaze pattern. Our findings demonstrate
that the eye-movement patterns may be correlated with toddlers’
adaptive dimension and preschoolers’ visual space dimension. As
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FIGURE 6

(A) Representative HMMs grouped by age group. (B) Representative HMMs discovered by clustering based on HMM similarities. Each representative
HMM includes one or two regions of interest (ROIs), as indicated by the different colors. Smaller images show the assignment of actual fixations to
different ROIs. The transition probabilities of eye movements among the ROIs are summarized in the transition matrix.

FIGURE 7

Heatmap of the correlation matrix generated using Spearman’s
method for the clinical characteristics of the toddler group. The
heatmap of the correlation coefficients is shown in the lower left
triangle matrix. P-values are in the upper-right triangle matrix.
*Significant at P < 0.05; **Significant at P < 0.01.

the most important functional domain of GDDS, the adaptive
dimension reflects the overall development status of children. It
serves as the cornerstone for future cognition development. The
moderate negative correlation between H-A values and the adaptive
dimension suggests that toddlers who exhibit an analytical gaze
pattern may have relatively better scores in the adaptive domain,
indicating the potential for better future cognition development.

FIGURE 8

Scatter plot of the development quotient (DQ) in the adaptive
dimension of the Gesell Developmental Diagnostic Schedule
(GDDS) and the H-A scale in the toddler group.

However, prospective research is needed to further investigate this
possibility.

4.5 Possible mechanisms of face gaze
patterns

Based on the recent literature, children who engage in an
analytical eye movement pattern may be involved in both local and
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FIGURE 9

Heatmap of the correlation matrix generated using Spearman’s method for the clinical characteristics of the preschooler group. The heatmap of the
correlation coefficients is shown in the lower left triangle matrix. P-values are in the upper-right triangle matrix. *Significant at P < 0.05; **Significant
at P < 0.01.

FIGURE 10

Scatter plot of the standard score in the visual space dimension of
the Wechsler Preschool and Primary Scale of Intelligence| Fourth
Edition (WPPSI-IV) and the H-A scale in the preschooler group.

global processing, whereas those exhibiting a holistic gaze pattern
may mainly be involved in global processing (Miellet et al., 2011).
The approach that actively retrieves local feature information
and global configuration information through an analytic eye
movement pattern may lead to optimal face recognition (Bonnen
et al., 2012). This is also supported by neuroimaging evidence, as an
fMRI study on adults found differences in brain activation between
participants who used an analytic versus holistic gaze pattern, with
the former showing more activation of brain areas related to face
perception (Chan et al., 2017). The results suggest that children

who exhibit an analytical gaze pattern may engage more actively in
planning eye movements and top-down visual attention (Katsuki
and Constantinidis, 2014; Chan et al., 2017) (driven by endogenous
factors) during face processing, as indicated by the observed higher
transfer of ROIs within analytical gaze patterns. Top-down visual
attention has been shown to enhance cognitive task performance by
filtering out irrelevant information and selecting useful visual cues
(Rutman et al., 2010; Gilbert and Li, 2013). Increased engagement
in active eye movement planning and visual attention control while
performing the task may explain this performance advantage. In
summary, based on indirect evidence from literature, children
who exhibit an analytical eye movement pattern may contain local
facial feature information (including important facial regions such
as the eyes, nose, and mouth) as well as global configuration
information (overall facial contour). Specifically, they may employ
more efficient strategies, such as actively engaging in eye movement
planning (through frequent switching within areas of interest) and
top-down visual attention (driven by endogenous factors, filtering
out irrelevant information and selecting useful visual cues), to
enhance cognitive task performance. However, further mechanistic
research is needed to validate the potential.

4.6 Practical implications

Eye-tracking technology offers benefits in terms of objectivity,
simplicity, speed, and cost-effectiveness (Carter and Luke, 2020).
In recent years, researchers from various fields have begun to
try using eye-tracking technology as a convenient method for
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assessing cognitive abilities. Xu et al. (2021) have demonstrated
the effectiveness of eye-tracking technology in evaluating cognitive
abilities in both normally developing children and those with
delayed development. Oyama et al. (2019) have used eye-tracking
to quickly assess cognitive function in patients with dementia. In
both cases, the cognitive scores obtained from the eye-tracking
correlated well with those derived from neuropsychological tests.

The findings from our study indicate a moderate negative
correlation between the H-A scale and the adaptive dimension
in toddlers aged 1–3 years, as well as a low negative correlation
between the H-A scale and visual space in preschoolers aged 4–
6 years. This suggests a potential association between toddlers’
gaze patterns and the adaptive dimension. Eye-tracking tasks
that incorporate face perception have the potential to be applied
to the evaluation of adaptive dimension in toddlers and visual
space dimension in preschoolers, and there is potential for their
clinical applications. However, additional studies are required to
advance this potential.

4.7 Limitations and future directions

This study relied on a cross-sectional approach, while
a longitudinal cohort design should be used to investigate
whether gaze patterns change in individual children during
age-related changes in the future. Additionally, due to the
COVID-19 pandemic, the recruitment of children from different
administrative regions in Nanjing became challenging during the
later stages of the experiment. Children participating in Experiment
2 were primarily recruited from our hospital for physical
examinations. Future studies should enhance the scientific rigor of
sampling by employing techniques like stratified random sampling
to ensure a representative sample of the entire population. Thirdly,
the study only demonstrates a moderate correlation between
toddlers’ eye-movement patterns and adaptive dimensions. Further
research is needed in the future to investigate whether these
findings hold true for older children. Moreover, expanding the
age range of children is also crucial for identifying the point at
which children’s cognitive processing of faces transitions from
a holistic to an analytic approach. This is essential in studying
children’s cognitive gaze patterns of faces. Fourthly, the combined
use of technologies such as eye-tracking, fMRI, EEG, and fNIRs,
is recommended to explore the potential mechanism of face gaze
patterns. Fifthly, despite the moderate correlation found between
gaze patterns and the adaptive dimension, as well as the low
correlation between children’s gaze patterns and the visual space
dimension in this study, there remains a gap in the utilization
of eye-tracking technology for assessing children’s adaptive and
visual space dimensions. Future studies are needed to promote
the potential application of eye-tracking tasks involving face
perception in the assessment of children’s adaptive and visual
space abilities.

5 Conclusion

By using eye-movement data analysis based on HMM, we
found that children exhibit two gaze patterns while freely viewing

different faces. The first pattern, referred to as the holistic gaze
pattern, entails a scan path that typically starts at the facial
contour or the entire face and surrounding area, and then lingering
around the same area. While the second pattern, known as the
analytic gaze pattern, typically switches between the eyes and
the center of the face, with a greater tendency to fixate on the
eyes. Children are more inclined to manifest the holistic gaze
patterns. The gaze patterns of children aged 1–6 exhibit age-related
characteristics and regularities. In addition, the eye-movement
patterns may be correlated with toddlers’ adaptive dimension and
preschoolers’ visual space dimension, and those who exhibit an
analytic pattern score higher on these dimensions, implying that
eye-movement tasks associated with face perception have potential
for assessing toddlers’ adaptive dimension and preschoolers’ visual
space dimension in future studies.
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