11 research outputs found

    Wave propagation and strain localization in a fully saturated softening porous medium under the non-isothermal conditions

    Get PDF
    The (THM) coupling effects on the dynamic wave propagation and strain localization in a fully saturated softening porous medium are analyzed. The characteristic polynomial corresponding to the governing equations of the THM system is derived, and the stability analysis is conducted to determine the necessary conditions for stability in both non-isothermal and adiabatic cases. The result from the dispersion analysis based on the Abel–Ruffini theorem reveals that the roots of the characteristic polynomial for the THM problem cannot be expressed algebraically. Meanwhile, the dispersion analysis on the adiabatic case leads to a new analytical expression of the internal length scale. Our limit analysis on the phase velocity for the non-isothermal case indicates that the internal length scale for the non-isothermal THM system may vanish at the short wavelength limit. This result leads to the conclusion that the rate-dependence introduced by multiphysical coupling may not regularize the THM governing equations when softening occurs. Numerical experiments are used to verify the results from the stability and dispersion analyses

    Identifying Material Parameters for a Micro-Polar Plasticity Model Via X-Ray Micro-Computed Tomographic (Ct) Images: Lessons Learned from the Curve-Fitting Exercises

    Get PDF
    Abstract: Unlike a conventional first-order continuum model, the material parameters of which can be identified via an inverse problem conducted at material point that exhibits homogeneous deformation, a higher-order continuum model requires information from the derivative of the deformation gradient. This study concerns an integrated experimental-numerical procedure designed to identify material parameters for higher-order continuum models. Using a combination of microCT images and macroscopic stress–strain curves as the database, we construct a new finite element inverse problem which identifies the optimal value of material parameters that matches both the macroscopic constitutive responses and the meso-scale micropolar kinematics. Our results indicate that the optimal characteristic length predicted by the constrained optimization procedure is highly sensitive to the types and weights of constraints used to define the objective function of the inverse problems. This sensitivity may in return affect the resultant failure modes (localized vs. diffuse), and the coupled stress responses. This result signals that using the mean grain diameter alone to calibrate the characteristic length may not be sufficient to yield reliable forward predictions. Key words: micro-CT imaging, micro-polar plasticity, critical state, higher-order continuum, Hostun San

    A Multifeatured Data-Driven Homogenization for Heterogeneous Elastic Solids

    No full text
    A computational homogenization of heterogeneous solids is presented based on the data-driven approach for both linear and nonlinear elastic responses. Within the Double-Scale Finite Element Method (FE2) framework, a data-driven model is proposed to substitute the micro-level Finite Element (FE) simulations to reduce computational costs in multiscale simulations. The heterogeneity of porous solids at the micro-level is considered in various material properties and geometrical attributes. For material properties, elastic constants, which are Lame’s coefficients, are subjected to be heterogeneous in the linear elastic responses. For geometrical features, different numbers, sizes, and locations of voids are considered to reflect the heterogeneity of porous solids. A database for homogenized microstructural responses is constructed from a series of micro-level FE simulations, and machine learning is used to train and test our proposed model. In particular, four geometrical descriptors are designed, based on N-probability and lineal-path functions, to clearly reflect the geometrical heterogeneity of various microstructures. This study indicates that a simple deep neural networks model can capture diverse microstructural heterogeneous responses well when given proper input sources, including the geometrical descriptors, are considered to establish a computational data-driven homogenization scheme
    corecore