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ABSTRACT
Multiscale thermo-hydro-mechanical-chemical coupling effects for fluid-infiltrating
crystalline solids and geomaterials: theory, implementation, and validation.

SeonHong Na

Extreme climate change and demanding energy resources have led to new geotechnical
engineering challenges critical for sustainable development and resilient infrastructure of
our society. Applications such as geological disposal of nuclear waste and carbon dioxide,
artificial ground freezing, and hydraulic fractures all require an in-depth understanding of
the thermo-hydro-mechanical coupling mechanisms of geomaterials subjected to various
environmental impact. This dissertation presents a multiphysical computational frame-
work dedicated to address the issues related to those unconventional applications.

Our objective is not only incorporating multiphysical coupling effects at the consti-
tutive laws, but also taking into account the nonlocal effects originated from the flow
of pore-fluid, thermal convection and diffusion among solid and fluid constituents, and
crystallization and recrystallization of crystals in the pore space across length scales. By
considering these coupling mechanisms, we introduce a single unified model capable of
predicting complex thermo-hydro-mechanical responses of geological and porous media
across wide spectra of temperature, confining pressure, and loading rate.

This modeling framework applies to two applications, i.e., the freezing and thawing
of frozen soil and the anisotropic crystal plasticity/fracture response of rock salt. High-
lights of the key ingredients of the models cover the stabilization procedure used for the
multi-field finite element, the return mapping algorithm for crystal plasticity, the micro-
morphic regularization of the modified Cam-Clay model, and the strategy for enhancing
computational efficiency of solvers, such as pre-conditioner, adaptive meshing, and inter-
nal variable mapping. By introducing the multiphysical coupling mechanisms explicitly,
our computational geomechanics model is able to deliver more accurate and consistent

results without introducing a significant amount of additional material parameters.



In a parallel effort, we analyze the impact of thermo-hydro-mechanical (THM) cou-
pling effects on the dynamic wave propagation and strain localization in a fully saturated
softening porous medium. The investigation starts with deriving the characteristic poly-
nomial corresponding to the governing equations of the THM system. The theoretical
analysis based on the Abel-Ruffini theorem reveals that the roots of the characteristic
polynomial for the THM problem cannot be expressed algebraically. Our analysis con-
cludes that the rate-dependence introduced by multiphysical coupling may not regularize

the THM governing equations when softening occurs.
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Chapter 1

Introduction

1.1 Motivation and objective

Computer models of geological materials are nowadays indispensable for engineers and
researchers to analyze engineering problems, validate designs, and make predictions for
increasingly complex problems. In civil and environmental engineering applications,
many commercial simulation packages such as ABAQUS, FLAC, or Plaxis, have become
default tools for geotechnical engineering and geomechanics analysis. Along with this
trend, a significant portion of research effort in geotechnical engineering has been ded-
icated on developing local constitutive models based on a critical state plasticity frame-
work at the fully drained or undrained limits under the isothermal condition [1-5]. These
models are then embedded in the finite element or finite difference solvers where the
balance of linear momentum is solved in an incremental manner.

Emerging global issues associated with extreme climate events and demanding energy
resources, however, require significant advancements in our knowledge and predictive
capability of complex physical and chemical mechanisms across time and length scales.
These complex processes are difficult to capture locally without considering the length
scales. Furthermore, due to the multiphysical coupling effects, constitutive responses of

a material point is not just influenced by the strain and strain history but is also affected



by the diffusion of pore-fluid, crystallization and re-crystallization of crystals in the pore
space, and thermal convection and diffusion among solid and fluid constituents. Hence,
proposing new phenomenological laws alone is no longer sufficient to meet the demand
for the increasingly complex engineering applications, such as geological disposal of nu-
clear waste and carbon dioxide, unconventional hydrocarbon recovery, hydraulic fracture,
thawing problems in permafrost region, artificial ground freezing for construction, and
tunnel and underground facility detection.

This dissertation investigates the development of computational models that capture
coupled thermo-hydro-mechanical-chemical behavior of geological materials across dif-
ferent length scales. To overcome the aforementioned limitations, our research approach
focuses on not just the development of appropriate constitutive laws but also the deriva-
tion of field equations under the multiphysics aspect. The numerical issues and techniques
in calculating the multifield problems are also explored associated with finite strain theory,
implementation of solvers, preconditioners, and adaptive mesh refinement. The material
parameter identification process inferred from experiments and the bridging-scale and ho-
mogenization techniques that replicate the interplay between microstructural attributes

and macroscopic responses are also addressed.

1.2 Outline of dissertation

This dissertation explores the theoretical and computational modeling of the critical be-
havior of materials under the coupled multiphysics effects. In particular, the failure
mechanism such as strain localization and fracture behavior are described associated
with thermo-hydro-mechanical influence in geomaterials and crystalline solid. Firstly, we
cover two topics, a multiphase frozen porous media and a geological repository for nuclear
waste disposal, respectively. The derivation of governing equations indicates how we

capture the characteristic behaviors such as phase transition and anisotropy. We further



address the failure mechanism in either macroscopic or microscopic aspects to properly
incorporate physical and chemical phenomena. Next, we delve into the field equations
for saturated porous media under the nonisothermal condition. Here the analytical inves-
tigation is performed to identify the influence of hydraulic and thermal diffusion on the
regularization of the multiphase system under strain softening. We then cover numer-
ical techniques and solution strategies associated with resolving multiphysics problems
such as inf-sup condition, preconditioning, nonlocality, and adaptive finite element sim-
ulations. The following summarizes the outline of this thesis.

In Chapter 2, a stabilized thermo-hydro-mechanical (THM) finite element model is in-
troduced to investigate the freeze—thaw action of frozen porous media in the finite defor-
mation range. By applying the mixture theory, the frozen soil is idealized as a composite
consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized
hardening rule at finite strain is incorporated to replicate how the elasto-plastic responses
and critical state evolve under the influence of phase transitions and heat transfer. The en-
hanced particle interlocking and ice strengthening during the freezing processes and the
thawing-induced consolidation at the geometrical nonlinear regimes are both replicated.

In Chapter 3, a combined multi-phase-field/crystal plasticity approach for crystalline
solids is described based upon computational thermomechanics. The main objective of
this topic is the computational modeling for crystalline rock salt, which is one of the major
materials used for nuclear waste geological disposal. Conventionally, this microstructural
effects of rock salt are often incorporated phenomenologically in macroscopic damage
models. Nevertheless, the thermo-mechanical behavior of a crystalline material is dictated
by the nature of the crystal lattice and micromechanics (i.e. the slip-system). Here we
employ a crystal plasticity framework in which single-crystal halite is modeled as a face-
centered cubic (FCC) structure with the secondary atoms in its octahedral holes, where a
pair of Na™ and Cl~ ions forms the bond basis. Utilizing the crystal plasticity framework,

we capture the existence of an elastic region in the stress space and the sequence of slip



system activation of single-crystal halite under different temperature ranges. To capture
the anisotropic nature of the intragranular fracture, we couple a crystal plasticity model
with a multi-phase-field formulation that does not require high-order terms for the phase
field.

In Chapter 4, the thermo-hydro-mechanical (THM) coupling effects on the dynamic
wave propagation and strain localization in a fully saturated softening porous medium are
analyzed. The characteristic polynomial corresponding to the governing equations of the
THM system is derived, and the stability analysis is conducted to determine the necessary
conditions for stability in both the non-isothermal and adiabatic cases. The result from
the dispersion analysis based on the Abel-Ruffini theorem reveals that the roots of the
characteristic polynomial for the THM problem cannot be expressed algebraically. Mean-
while, the dispersion analysis on the adiabatic case leads to a new analytical expression
of the internal length scale. Our limit analysis on the phase velocity for the nonisother-
mal case indicates that the internal length scale for the nonisothermal THM system may
vanish at the short wavelength limit. This result concludes that the rate-dependence intro-
duced by multiphysical coupling may not regularize the THM governing equations when
softening occurs. Numerical experiments are used to verify the results from the stability
and dispersion analyses.

In Chapter 5, the numerical techniques and solution strategies for resolving mul-
tiphysics problems are investigated. The numerical system of phase-transiting frozen
porous media in Chapter 2 has been solved in a monolithic way to simultaneously ac-
count for different physical and chemical mechanisms. The stabilized finite element for-
mulation based upon the polynomial projection scheme is proposed, in which the inf-
sup deficiency of equal-order finite element is counterbalanced using stabilization terms
based on the weak two-fold inf-sup condition. Furthermore, the preconditioning strat-
egy for the mixed finite element is introduced to resolve the calculation slow down the

issue in direct solvers due to the ill-conditioned tangent matrix system. The operator-split



method to resolve a combined thermomechanics/multiphase damage problems in Chapter
3 is then addressed. For regularization of the numerical system under strain localization
conditions, the micromorphic approach for nonlocal models is further covered associated
with the adaptive mesh refinement techniques. The projection method for global updates
of internal variables located in local quadrature points is further described.

Finally, in Chapter 6, the conclusions of this thesis, with a summary of the main con-

tributions and a description of future work are presented.
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Chapter 2

Computational thermo-hydro-mechanics for phase
transiting multiphase frozen soil in the finite deformation

range

This topic is published as: S.H. Na, W.C. Sun, Computational thermo-hydro-mechanics for
multiphase freezing and thawing porous media in the finite deformation range, Computer

Methods in Applied Mechanics and Engineering, 318(1), 2017, doi:10.1016/j.cma.2017.01.028.

2.1 Introduction

In permafrost regions, soil underneath pavement and concrete structures may experience
freeze-thaw action. During the freezing phase, the crystallization of ice leads to the ex-
panding of voids and micro-cracks in the porous media. When temperature arises, ices
near the heat source may thaw out and turn into meltwater, but this water may be trapped
by the frozen region that remains nearly impermeable. This results in a thaw-weaken soil
that is wet, loose and highly deformable [6-9]. The freeze-thaw action may repeat it-
self everyday due to the temperature difference between day and night near surface, and,
in a larger spatial and time scale, between winter and spring. The accumulated damage
and deterioration of roads, airfields and infrastructure due to freeze-thaw action are of

ultimate importance for vehicle mobility and structural integrity of infrastructure in cold



region. This demand of understanding the freeze-thaw action of porous media undergoing
large deformation is further intensified by the climate changes that bring in more extreme
weather and heavier rains which are expected to accelerate the damages of infrastructure
in alerting speed in the coming decades. For instance, the frost-free season in Fairbanks,
Alaska has been lasted 50 percent longer between 1904 and 2008. The increase of per-
mafrost temperature, which occurs throughout Alaska since the late 1970s, has caused
land subsidence and put public infrastructure, such as roads, runways and sewer system,
at risk [9, 10].

In this chapter we present a finite strain poromechanics theory that fully considers
the thermo-hydro-mechanical coupling effect of the mass-exchanging, phase-transiting
porous media. Previously, significant contributions have been made to derive thermal-
sensitive or degree-of-saturation-sensitive constitutive laws for the frozen soil [11]. These
constitutive laws are often incorporated in thermo-mechanical simulations in which the
presence of unfrozen water is neglected. A notable exception is the work presented in
Nishimura et al. [12] where the infinitesimal strain thermo-hydro-mechanical model is
coupled with a modified Cam-clay model with generalized hardening rules. Unlike the
previous modeling efforts in which the flow of unfrozen water, energy dissipation due
to phase transition and geometrical nonlinearity are neglected (cf. Michalowski and Zhu
[11], Jessberger [13], and McKenzie, Voss, and Siegel [14]), we introduce a new compre-
hensive theory that incorporates all of these important thermo-hydro-mechanical mecha-
nisms into the balance principles (linear momentum, mass, energy) in the finite deforma-
tion range. An implicit total Lagrangian finite element framework is formulated, while
thermal and cryo-suction effects are explicitly captured by a generalized hardening rules
that allow the yield surface to evolve based on the volume fraction of ices in the pore
space and the temperature.

The organization of this chapter is as follows. We first provide the derivation of the

balance principle for frozen soil in the geometrically nonlinear regime (Section 2.2). Then,



the finite strain elasto-plasticity model with the non-mechanical hardening rule and the
finite strain suction-permeability theory is presented (Section 2.3). Following this is the
total Lagrangian finite element formulation of the thermo-hydro-mechanical model (Sec-

tion 2.4). Numerical examples are then provided (Section 2.5), followed by a conclusion.

2.2 Conservation laws

In this section, we present the balance principle (i.e. linear momentum, mass and energy)
for frozen soil undergoing finite deformation. The soil is idealized as a continuum mix-
ture that consists of three constituents, the liquid water and crystal ice, which occupy
the pores inside the solid skeleton, and the solid constituent that forms the solid skeleton.
Based on the classical thermo-hydro-mechanics theory as reported in the previous stud-
ies [7, 15-20], we present a new derivation that takes account of the heat generated from
plastic dissipation and the thermal-convection to replicate the path-dependent thermo-
hydro-mechanical effect of frozen porous media with infiltrating unfrozen water in the
finite deformation range. The incorporation of geometrical nonlinearity effect is criti-
cal for modeling thawing materials in which the cryo-suction effect often leads to soft
soil that develops large strain. The energy required for the phase transition between ice
and water is incorporated into the balance of energy. Meanwhile we adopt the Taylor-
Quinney coefficient to control the amount of mechanical dissipation converted into heat.
We extend both the net stress theory in Gens [21] and the effective stress theory in Zhou
and Meschke [17] for the finite strain problems. Consequently, the energy dissipation
due to fluid diffusion, thermal convection, phase transition and outward heat flux are all
formulated in the total Lagrangian framework. The implications of these modifications

will be examined via numerical examples.



2.2.1 Kinematics of three-phase frozen porous media

We consider an idealized kinematics based on the theory of pre-melting dynamics which
elucidates the mechanism of existence of unfrozen water at temperatures below the bulk
freezing point [8, 22]. In addition, the behavior of crystal ice is captured through crystal
ice pressure obtained by the Clausius-Clapeyron equation. This relation is based on ther-
modynamic requirements for equilibrium that needs to be satisfied by crystal ice pressure,
liquid water pressure and temperature in non-isothermal condition [12, 23]. Within this
framework, we adopt the passive air phase assumption. Hence, we neglect the existence
of air in the pore space and consider a three-phase porous medium composed of solid
skeleton, liquid water, and crystal ice [24, 25].

Based on the mixture theory, if the representative elementary volume exists, then the
three-phase material can be idealized as a mixture continuum where each constituent oc-
cupies a fraction of volume at the same macroscopic material point [26-30]. Unlike solid
composite in which one may assume that all constituents at a material point share the
same trajectories until delamination or other forms of failure, the solid and pore-fluid
constituents do not necessarily follow the same trajectory unless the porous medium is
locally undrained. Therefore, the mappings for materials at a point « of the current con-
figuration can be represented from the configuration of solid skeleton (X°®), liquid water

(X") and crystal ice (X ) counterparts:

x =" (X%t), a=S,L,C. (2.1)

Because the path-dependent constitutive laws and the internal variables that represent
the loading history of the solid skeleton are corresponding to the solid skeleton trajectory,
our formulation will be derived in accordance with the motion of the solid skeleton (¢°).
As a result, the motion of liquid water and crystal ice in THM model at finite-strain is

captured by their relative motion with respect to the solid skeleton. The frozen soil with

10



three constituents (solid skeleton (S), liquid water (L) and crystal ice(C)) is homogenized
as a continuum. Therefore, the current density field of a porous medium can be written

as,

p=0p"+p"+p° = ps + " pL + ¢ pc, (2.2)

where p® (o = S, L, C) is the partial mass density of constituent v given by p® = ¢%pq; ¢°
is the volume fraction of each constituent in the current configuration; p,, is the intrinsic
mass density of each constituent . By assuming that the pores inside the solid skeleton
are fully saturated with either liquid water or crystal ice, the density of frozen soil mixture
can be obtained by taking the freezing characteristic function. The freezing characteristic
function (S.) indicates the ratio between the volume of liquid water in the void to the total
volume of the void, while the ratio of crystal ice in the total void space is S¢c = 1 — Sy.
The concept of freezing characteristic function is analogous to the water retention curve
of unsaturated porous materials (in Section 2.3.2). Therefore, the total current density of

(2.2) can be also rewritten as,

p=ps + ¢S + ¢"Scpc = (1 — ¢")ps + ¢" [SupL + (1 — SL)pc] - (2.3)

Note that this becomes the total current density of a fully saturated porous medium under
unfrozen state when S;, becomes a unity (the pores are fully saturated only with liquid

water).

2.2.2 Balance of linear momentum

To capture the stress status during thawing and freezing, we adopt the Bishop’s effective
stress theory for the frozen soil idealized as a three-phase continuum [31]. In other words,
we assume that the total stress o can be partitioned into the effective stress o’ which
evolves due to the deformation and loading history of the solid skeleton, and a net pore

pressure p build up in the void space due to the motion and interaction of the water and
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ice crystal, that is,

o=o' —pl, with p=xp.+ (1 —x)pc, (2.4)

where the parameter X is commonly assumed to be equal to the degree of liquid satura-
tion (x = Sr) [32-34] where pp and pc indicate the liquid water and crystal ice pressures,
respectively. Note that I is the second-order identity tensor. This treatment is a simpli-
fication of the actual retention behavior in which the history or path dependence of the
effective stress coefficient y is neglected. In this formulation, the interaction between
ice crystal and unfrozen water is characterized by a freezing retention curve in an anal-
ogy of the characterization of the water-air interaction via the water retention curve (cf.
O’Neill [35] and O’Neill and Miller [36]). As such, the pore space is assumed to be al-
ways saturated by a combination of two constituents, the ice crystal and unfrozen water.
Furthermore, we follows the treatment in Nishimura et al. [12] and Zhou [37] where the
Bishop’s effective stress principle originally proposed for unsaturated porous media is ap-
plied to capture the interaction among the solid skeleton, ice crystal, and unfrozen water.
It should be noted that while the usage of freezing retention curve and Bishop’s effective
stress theory does imply that the water-ice-skeleton and water-air-skeleton interactions
share similarities, in particular, both of them are determined by pore size distribution and
the water-solid interface tensional force [7, 12, 21, 32], the ice crystal is not considered
as a fluid, and the influence of the presence of ice on the shear strength must be taken
account properly. In this work, this influence is captured via a phenomenological ap-
proach in the framework of finite strain critical state theory. More consistent approach
may require more explicit modeling of the crystallization of ice phase at the pore scales
and treating the ice and solid skeleton as a composite or effective medium composed of
two solid phases [37]. These improvements are out of the scope of this study but will be

considered in future extensions.
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In this work, we adopt the total Lagrangian formulation and hence the model is formu-
lated with respect to the reference configuration of the solid skeleton. Note that the total
Lagrangian formulation is not the only feasible choice. For instance, Sanavia, Schrefler,
and Steinmann [38] has successfully formulated the poromechanics problem in a spatial
setting which results in an updated Lagrangian formulation. Due to the usage of total
Lagrangian formulation in our current work, the balance of linear momentum is written
in terms of the total Piola-Kirchhoff stress tensor, which is related to the first effective
Piola-Kirchhoff stress tensor and the pull back of the contribution from the water and ice

crystal constituents, i.e.,

P=7.F'=17.FT—JpF ", (2.5)

where 7 = Jo is the symmetric total Kirchhoff stress tensor, 7/ = Jo’ is the effec-
tive Kirchhoff stress tensor (e.g. Diebels and Ehlers [39], Simo [40], Ehlers [41], Sanavia,
Pesavento, and Schrefler [42], Sun, Ostien, and Salinger [43], and Song and Borja [44]).
Therefore, by ignoring the inertia forces, the balance of linear momentum in Lagrangian

form takes the following relation in the reference configuration:

VX. P+ pG =0, (2.6)

where pg = Jp is the pullback of the total mass density which can be determined via (2.3).

2.2.3 Balance of mass

We assume that the porous medium is fully saturated with three constituents, solid (S),
liquid water (L), and crystal ice (C). The possibility of phase transition between liquid wa-
ter and crystal ice is considered. The following derivation is formulated with our choice
of primary variables (solid displacement, liquid phase pressure, and temperature) in mind.

Since the frozen porous media we considered consist of three constituents, one may also
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introduce additional primary variables, such as the degree of saturation or ice phase pres-
sure. However, as we will discuss in Section 2.3, one may also exploit arguments from the
Clausius-Clapeyron equation to eliminate the ice phase pressure from the prime variables
by expressing it as a function of the liquid phase pressure and temperature. This approach
allows us to derive a simplified system of equations with just three prime variables. The

balance of mass for a three-phase solid-water-ice mixture, therefore, can be written as,

Dp® S

T 0 —0 2.7
P V=0, (27)
Dp*t o
Dpt + V0 4 V- (ploss) =~ e, (2.8)
D o
D’; + SV 0+ V% (pC0cs) = e, (2.9)

Here my_,c is the rate of liquid water mass changing into crystal ice. In general, the
flow of ice with respect to soil skeleton (vcs) is much slower than the flow of liquid ice.
Therefore, we can assume that vcs ~ 0. Combining (2.8) and (2.9) leads to the following
equation,

Do Dp°

Dt T Dt

+ (Pt + ) VE v + V- (phurs) = 0. (2.10)

We can consider an equation of state for density/pressure relation through a barotropic
flow assumption (e.g. Sun [19], Sun, Ostien, and Salinger [43], and Song and Borja [44]).
Introducing a bulk modulus for each phase (solid, liquid water, and crystal ice), we expand

the total time derivative of the partial density p™ as,

Dp*  D(¢'p) D¢ HbLDpL . (D¢L L&D ) (2.11)

Dt Dt Dt Dt Dt | K, Dt
o Dy D¢ ¢° Dpe
lik - 2.12
ikewise, D1 ,Oc( T A K. Dt (2.12)
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Inserting these relationships into (2.7) and (2.10) gives,

D¢ ¢ Dps |
9 Ups Ve 4y = 0 2.13
ot PR TV E0 213)
D¢" ¢ Dp DS ¢S Dpc\ | 1, o e
pL(Dt Tt ) T\ D TR )T AV
+ V*-(pvLs) = 0. (2.14)

Taking into account the saturation of liquid water and crystal ice, we use the following

identity:

D¢™ D
s
S” D¢S

_ S

m=L, C, (2.15)

in which, S is the saturation of liquid water and Sc (= 1 — Sp) is the saturation of
crystal ice. Combining the equations of (2.13), (2.14), and (2.15) leads to an expression
for the mass balance equation of three-phase porous medium. Note the notation that

(-) = D(-)/Dt is used.

s
PL {(1 - ¢S)SL + Z_pL + [Léb ps + S V- 1

. C S S
pc [(1 — ¢°)Sc + f(—cﬁc + lc(f ps + Sc V¥ ’U] + V¥ w =0, (2.16)

where w = ¢“p 5. The Piola transform of w is

W=JF"! w, (2.17)

where W and w are the Lagrangian and Eulerian relative mass flow vectors with the

following Piola identity (e.g. Diebels and Ehlers [39], Simo [40], Ehlers [41], Sanavia,
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Pesavento, and Schrefler [42], Sun, Ostien, and Salinger [43], and Song and Borja [44]),

VX W =JV® w. (2.18)

Furthermore, we note that (cf. Song and Borja [44]),

Tpn = (Jpa) — ped,  7=S5, L, C. (2.19)

Substituting (2.17), (2.18) and (2.19) into (2.16) gives the mass balance equation in the

reference configuration as,

. L . g gbs; QSL S Qbs .
S v L v . L
PL {(1 ¢”)SLJ + KLPLJ+ s psd + (SL KLPL s ps) J]

. Cc . S, ¢S . ¢C S, ¢S X
+pc [(1 ¢”)Scd + KCPCJ+ s psd + (Sc —chc s Ps) J]

+ VX W =0. (2.20)

Assuming that the change of unfrozen fluid content due to the expansion and contraction
of the constituents of porous medium is negligible compared to that due to changes of

porosity and degree of saturation, mass conservation equation is simplified as,
(1= &%) (p — pe)Sid + [puS + pe(1 — SL)] J + VE-W = 0. (2.21)

Here the Lagrangian liquid water mass flux after a pull-back operation reads (cf. Sun [19]

and Andrade and Borja [45]),
W=pK, (—V¥p.+pF" G), where, K. =JF ' k-F. (2.22)

The pull-back permeability tensor (K1) is obtained by pulling-back the Eulerian effective

permeability tensor to the reference configuration [43]. The constitutive law for the Eule-
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rian effective permeability tensor (k) in (2.38), which depends on the degree of saturation

of the ice crystal, porosity and temperature will be described in Section 2.3.2.

2.2.4 Balance of energy

For the sake of simplification, the previous efforts on frozen soil modeling often adopt a
balance of energy equation that neglects the contribution of mechanical dissipation, heat
convection, structural heating and the geometrical nonlinearity (cf. Michalowski and
Zhu [11], Nishimura et al. [12], Zhou [37], and Michalowski [46]). This treatment is often
a trade-off between convenience and rigorousness. A well-justified simplification may
allow one to derive analytical solution or at the very least shorten the implementation
time. Nevertheless, the additional assumptions also limit the application of the simplified
thermo-hydro-mechanics theory to more general situation. For instead, dissipation due to
the frictional shear of the frozen soil may generate heat that melts the portion of ice crys-
tal in the pore space. Flow of unfrozen water that is significantly hotter or colder than
the frozen soil may cause significant change in temperature of the frozen soil, and the
thawing process may weaken the soil and cause the thaw-soil highly deformable. These
mechanisms are important for modeling frozen soil that exhibits path dependent behav-
iors, especially when the hardening/softening mechanism of the frozen soil is sensitive to
the temperature [12]. These reasons above motivate us to derive a version of the balance
of energy that incorporates all the aforementioned mechanisms.

Our starting point is the balance of energy for three-phase frozen soil at finite strains

expressed in the current configuration which reads (cf. Sun [19] and Simo and Miehe

[47]):
¢LSLCFL

AL

JepT = |-JV® q+ Jw - V=T | + [Dmeen + Rr). (2.23)

Here we adopt an apparent heat capacity cg, which incorporates both the heat capacity
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of frozen soil and latent heat [14, 48, 49], that is,

0S5,
cF:<m¢+wwf&wﬁmmuﬂﬁ&+mu—&hﬁ
oS,
= pscsd® + prec(l — %) St + peee(l — ¢°)Se — pe(1 — ¢S)la—TCa (2.24)

where cs, ¢ and cc are the specific heats of each constituent, and [ is the latent heat
of fusion (liquid water and crystal ice). In (2.23), Dpex, denotes the contribution to the
dissipation due to pure mechanical load and Ry is the heat source term. Assuming that
all constituents of frozen soil follow Fourier’s law, the Cauchy heat flux may be expressed
as the dot product of the gradient of temperature and the effective thermal conductivity
of the multi-phase porous media (k). In this work, we estimate the effective thermal

conductivity as the geometric mean [50], i.e.,
q=—-krV*T, k= K;_¢SHEL¢S/£€C¢S, (2.25)

where ks, k1 and k¢ indicate the isotropic thermal conductivities of solid, liquid water
and crystal ice, respectively. It should be noted that the geometric mean is only one of
the many possible ways to homogenize the thermal conductivity. Another valid choice

can be, for instance, the estimate based on Eshelby equivalent inclusion method (cf. Sun

[19]).
Applying the Piolar-Kirchhoff heat flux Q) corresponding (2.25) reads,

Q=-K; VXT, (2.26)
where K 7 is the pull-back thermal conductivity tensor, that is,

Ky=JF ' k- F7T, k=xl. (2.27)
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(2.23) can be recapitulated in the reference configuration as follows:

(bLSLCFL

PL

JerT = |- VX Q + W - FT.VXT| + [Duen + Rrl. (2.28)

where Dyen = 88 : D and 3 is the Taylor-Quinney coefficient (cf. Taylor and Quin-
ney [51], Stainier and Ortiz [52], and Arriaga, McAuliffe, and Waisman [53]). Here we
assume that the mechanical dissipation of the solid skeleton is primary driven by plastic
work. A more comprehensive study would require the consideration of other dissipa-
tive mechanisms, such as creeping and fracture. Furthermore, it is also possible that the
Taylor-Quinney coefficient of frozen soil can be temperature and strain-rate dependent.
Nevertheless, the identification of the relation among the Taylor-Quinney coefficient and
the temperature and strain-rate requires suitable design of experiments to generate suffi-
cient experimental data. These generalizations of the proposed model will be considered

in the future studies.

2.3 Constitutive model

The balance principle presented in Section 2.2 provides a general description for the three-
phase frozen porous media undergoing large deformation. In this section, we introduce
specific constitutive models to replicate the thermo-hydro-mechanical responses of a soil
undergoing deformation in geometrical nonlinear regime. In particular, we assume that
the soil in the unfrozen and isothermal states may exhibit constitutive responses ade-
quately described by a finite strain Cam-Clay model with an associative hardening rule
(e.g. Borja and Tamagnini [54] and Callari, Auricchio, and Sacco [55]). We then introduce
an additional hardening/softening mechanism which allows the yield surface changes ac-
cording to the degree of saturation of ice crystal to mimic the tensile and enhanced shear
