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ABSTRACT

Multiscale thermo-hydro-mechanical-chemical coupling effects for fluid-infiltrating

crystalline solids and geomaterials: theory, implementation, and validation.

SeonHong Na

Extreme climate change and demanding energy resources have led to new geotechnical

engineering challenges critical for sustainable development and resilient infrastructure of

our society. Applications such as geological disposal of nuclear waste and carbon dioxide,

artificial ground freezing, and hydraulic fractures all require an in-depth understanding of

the thermo-hydro-mechanical coupling mechanisms of geomaterials subjected to various

environmental impact. This dissertation presents a multiphysical computational frame-

work dedicated to address the issues related to those unconventional applications.

Our objective is not only incorporating multiphysical coupling effects at the consti-

tutive laws, but also taking into account the nonlocal effects originated from the flow

of pore-fluid, thermal convection and diffusion among solid and fluid constituents, and

crystallization and recrystallization of crystals in the pore space across length scales. By

considering these coupling mechanisms, we introduce a single unified model capable of

predicting complex thermo-hydro-mechanical responses of geological and porous media

across wide spectra of temperature, confining pressure, and loading rate.

This modeling framework applies to two applications, i.e., the freezing and thawing

of frozen soil and the anisotropic crystal plasticity/fracture response of rock salt. High-

lights of the key ingredients of the models cover the stabilization procedure used for the

multi-field finite element, the return mapping algorithm for crystal plasticity, the micro-

morphic regularization of the modified Cam-Clay model, and the strategy for enhancing

computational efficiency of solvers, such as pre-conditioner, adaptive meshing, and inter-

nal variable mapping. By introducing the multiphysical coupling mechanisms explicitly,

our computational geomechanics model is able to deliver more accurate and consistent

results without introducing a significant amount of additional material parameters.



In a parallel effort, we analyze the impact of thermo-hydro-mechanical (THM) cou-

pling effects on the dynamic wave propagation and strain localization in a fully saturated

softening porous medium. The investigation starts with deriving the characteristic poly-

nomial corresponding to the governing equations of the THM system. The theoretical

analysis based on the Abel–Ruffini theorem reveals that the roots of the characteristic

polynomial for the THM problem cannot be expressed algebraically. Our analysis con-

cludes that the rate-dependence introduced by multiphysical coupling may not regularize

the THM governing equations when softening occurs.



Contents

List of Figures v

List of Tables xi

Acknowledgements xiii

1 Introduction 1

1.1 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Computational modeling of phase transiting frozen soil in the finite deforma-

tion range 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Kinematics of three-phase frozen porous media . . . . . . . . . . 10

2.2.2 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Balance of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Balance of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Constitutive law for skeleton with ice crystals . . . . . . . . . . . 20

2.3.2 Freezing characteristic function for frozen soil . . . . . . . . . . . 25

2.4 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



2.4.1 Galerkin form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Consistent linearization . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.3 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.4 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Thawing consolidation of frozen ground . . . . . . . . . . . . . . 37

2.5.2 Soil freezing from unfrozen state . . . . . . . . . . . . . . . . . . 38

2.5.3 Injecting unfrozen fluid in frozen ground . . . . . . . . . . . . . . 40

2.5.4 Thermal softening by plastic dissipation in 2D biaxial test . . . . 45

2.5.5 Coupled THM effects of frozen soil system on shear band . . . . 49

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Computational plasticity and damage mechanics for crystalline solids under

the nonisothermal condition 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Strain energy equivalence for coupling phase field and plasticity 61

3.2.2 Kinematics for crystal deformation of the damaged halite . . . . 62

3.2.3 Multi-phase-field approximation for anisotropic fracture . . . . . 64

3.2.4 Balance of linear momentum and microforce . . . . . . . . . . . 67

3.2.5 Energy balance equation and dissipation inequality . . . . . . . . 69

3.2.6 A specific free energy functional . . . . . . . . . . . . . . . . . . 74

3.3 Constitutive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Single crystal elasticity . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.2 Single crystal plasticity . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.1 Galerkin form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.2 Linearization for the staggered algorithm . . . . . . . . . . . . . 86

ii



3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5.1 Effect of crystal orientations . . . . . . . . . . . . . . . . . . . . . 90

3.5.2 Thermal effect on anisotropic creeping . . . . . . . . . . . . . . . 93

3.5.3 Loading rate effect . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5.4 Crack propagation in a bicrystal halite . . . . . . . . . . . . . . . 98

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Thermo-hydro-mechanical (THM) coupling effects on the dynamic wave

propagation and strain localization in a softening porous media 103

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Stability and dispersion analyses . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Model assumptions and governing equations . . . . . . . . . . . 106

4.2.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2.3 Dispersion analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3.1 Adiabatic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.2 Non-isothermal case . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 Numerical techniques and solution strategies for coupled multiphysics mech-

anisms in crystalline solids and geomaterials 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Inf-sup, preconditioing, and operator-split . . . . . . . . . . . . . . . . . 138

5.2.1 Spatial stability and two-fold inf-sup tests . . . . . . . . . . . . . 138

5.2.2 Pre-conditioner for three-field system . . . . . . . . . . . . . . . 143

5.2.3 Operator-split solution strategies . . . . . . . . . . . . . . . . . . 147

5.3 Nonlocality and adaptive mesh refinement . . . . . . . . . . . . . . . . . 149

5.3.1 Micromorphic approach for nonlocal critical state plasticity . . . 150

iii



5.3.2 Recovery of internal variables using Lie-group interpolation . . . 153

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Closure 161

6.1 Scope and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Future Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 165

iv



List of Figures

2.1 Change of the yield surface from unfrozen (T > 0 ◦C) to frozen state (T =

−2 ◦C) – tension is positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 (a) Freezing characteristic function (SL, degree of saturation) and (b) Relative

permeability (kr) under different liquid water pressure (pL) and temperature

(T ) conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Schematic diagram of thawing simulation with boundary conditions (a) and

the comparison of thawing settlement results (b) with the previous research

[77] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Transient responses of the freezing soil - changes of temperature, cryo-

suction, porosity and ice saturation . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Schematics of injection well simulation: a quarter of the domain (the domain

length, L = 0.38 m; the radius of injection well,R = 0.03 m; the confining pres-

sure, p0 = 100 kPa) was simulated from the initial temperature (Ti) of −2 ◦C.

The temperature of the fluid mass flux (f = 0.001 cm2/sec.) was increased to

1 ◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Thermo-hydro-mechanical behavior of frozen soil in the injection well prob-

lem - different phase zones indicated by the temperature contour and liquid

water stream line under (a) infinitesimal and (b) finite strain models . . . . . 43

v



2.7 The effect of considering latent heat in apparent specific heat on thermo-

hydro-mechanical behavior of frozen soil. Temperature and equivalent plastic

strain distribution with fluid flow stream line is compared at the same time

(after 2 hours from the initial state) . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 The effect of considering latent heat in apparent specific heat on thermo-

hydro-mechanical behavior of frozen soil: displacement vs. time at the

well surface, cry-suction, temperature and equivalent plastic strain vs. time

around the injection well (0.03 m away from the well surface) . . . . . . . . 45

2.9 The schematic of the 2D biaxial test with the dimensions of 0.1 m × 0.3 m

deforming in plane strain: the vertical displacement (δ) is applied on the top

surface of the specimen, while the bottom of the specimen is fixed; the left

side is fixed in the lateral direction; the confining pressure (σc) of 1000 kPa is

applied on the right side of the specimen. The initial temperature (Ti) was set

to −1 ◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 The effect of plastic dissipation in 2D biaxial test: Equivalent plastic strain

forming shear band (a) at 80 seconds and the temperature distribution with

different Taylor-Quinney coefficients ((b) β = 1.0, (c) β = 0.0 – no dissipa-

tion) in a deformed shape (scale=1.0) . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 The effect of plastic dissipation in 2D biaxial test: the change of yield surface,

stress path, deviatoric stress vs. strain and specific volume vs. logarithm of

mean effective stress at two different local elements . . . . . . . . . . . . . . 50

2.12 The effect of plastic dissipation reflected on the specimen. Fast and slow load-

ing indicates 2.0× 10−4 m/s and 2.0× 10−7 m/s, respectively . . . . . . . . 51

2.13 The effect of different thermal conductivities on shear band (equivalent plastic

strain, temperature and pore pressure distributions): the left and right figures

in (a), (b) and (c) present the results under high and low thermal conductivities,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



2.14 The effect of different permeability on the development shear band (equiva-

lent plastic strain, temperature and pore pressure distributions): the left and

right figures in (a), (b) and (c) present the results under high and low effective

permeabilities, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 Disposal operations for Transuranic (TRU) waste at the Waste Isolation Pilot

Plant (WIPP) – reproduced from Hansen and Leigh [87] . . . . . . . . . . . . 56

3.2 The description of the slip-system of single-crystal halite, (a) an aggregate of

many atoms for the face centered cubic crystal structure (reproduced from

Callister Jr and Rethwisch [146] – adapted from the original Moffat, Pearsall,

andWulff [147], (b) a unit cell for the sodium chloride (NaCl) crystal structure

(reproduced from Callister Jr and Rethwisch [146]), and (c) the slip-system

{110}⟨11̄0⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Analysis of material anisotropy by changing the orientation of the slip sys-

tem, (a) the set-up for plane strain compression test, (b) the definition of Euler

angles (ϕ, ψ) in the three-dimensional plane (reproduced from Borja [61]) in-

cluding the slip system of single-crystal halite (see each slip system in Figure

3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Stress-strain curve of single-crystal halite with different orientations of the

slip-system (the Euler angle ψ is fixed 0◦ while changing ϕ = 0◦, 10◦, and 30◦,

respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Phase-field values (top) and plastic slip results patterns (bottom)with different

orientations of the slip-system to investigate the material anisotropy under

plane strain compression test condition. The patterns are captured at the last

numerical step of each case. Euler angle θ = 0◦ is fixed while ϕ varies 0◦, 10◦,

and 30◦, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



3.6 Analysis of temperature effect on mechanical responses, (a) the set-up for

plane strain compression test, (b) stress-strain curves for each temperature

condition (θ0 = 25 ◦C, 50 ◦C, and 90 ◦C, respectively) . . . . . . . . . . . . . . 94

3.7 Phase-field values (top) and plastic slip results (bottom) patternswith different

initial temperature conditions at the same vertical strain, 0.23 %. The constant

displacement loading is applied at the top, and the Euler angles are fixed with

ψ = 0◦ and ϕ = 70◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.8 Analysis of the loading rate effect under two-dimensional tension test, (a)

the set-up for boundary value problem, (b) stress-strain curve with different

loading rates (ϵ̇ = 1.0e−7/sec.). The initial temperature θ0 is set to 25 ◦C, and

the Euler angles are set to ψ = 0◦ and ϕ = 0◦ . . . . . . . . . . . . . . . . . . 97

3.9 Phase-field values (top) and plastic slip results (bottom) patternswith different

loading rates are illustrated. The results are captured at the last numerical step

of each simulation with the loading rate ϵ̇ = 1.0e−7/sec . . . . . . . . . . . . 98

3.10 The numerical set-up for a bicrystal is depicted to analyze the impact of the

grain boundary fracture energy on crack propagations (reproduced from Os-

hima, Takaki, andMuramatsu [133]). The Euler angles ϕ are set to 30◦ and 60◦,

respectively to left and right side grains. The single cleavage plane is assumed

to the grain boundary with the direction of 45◦ along the diagonal. The initial

temperature is set to 25 ◦C, and the fracture energies of the grain boundary

are adopted 86%, 75%, and 50% of the grain fracture energy, respectively . . . 100

3.11 Phase-field values (left) and plastic slip results (right) patterns with different

fracture energies of the grain boundary are illustrated. Case 1 (a) and (b)

assumes the fracture energy of the grain boundary with 86% of grain fracture

energy; Case 2 (c) and (d) with 75%; Case 3 (e) and (f) with 50% of the grain

fracture energy, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



4.1 Phase velocity vs. permeability with different thermal conductivities (With

Et = 30 MPa, ρc = 4.5 kJ/m3/◦C, M = 200 MPa and T0 = 20 ◦C) . . . . . . . 122

4.2 Relationship of the cutoff wavenumber with permeability and specific heat

under adiabatic condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Damping coefficient (α) vs. Normalized wavenumber . . . . . . . . . . . . . 128

4.4 Relationship of the internal length scale with the permeability and specific

heat under the adiabatic condition . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5 One dimensional soil bar in axial compression . . . . . . . . . . . . . . . . . 130

4.6 Applied stress and local stress-strain diagram . . . . . . . . . . . . . . . . . . 130

4.7 Development of the localization zone under possible wave propagation - the

plastic strainmoves towards the depth along the time (the reference condition,

permeability = 5.0× 10−3 m/s, ρc = 4.5 kJ/m3/◦C, σy =30 MPa) . . . . . . . 132

4.8 Development of the localization zone under no wave propagation - the plastic

strain stays at the same depth along the time . . . . . . . . . . . . . . . . . . 132

4.9 Developement of the localization zone (non-isothermal condition with κ =

1.0 kW/m/◦C, σy = 30 MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.10 Developement of the localization zone of non-isothermal condition with dif-

ferent thermal conductivities - plastic zone moves toward the depth along the

time (kperm = 1.0× 10−10 m/s, ρc = 3.5 kW/m/◦C, σy = 3.8 MPa) . . . . . . 134

4.11 Development of the localization zone under no wave propagation - the plastic

strain stays the same depth along the time (Non-isothermal condition, κ = 1.0

kW/m/◦C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.12 Independence of the strain localization zone width under different mesh sizes,

and limited changes of temperature field along the bar under various thermal

conductivities (at t = 1.0 sec with kperm = 1.0× 10−10m/s, ρc = 4.5kJ/m3/◦C) 136

5.1 Inf-sup test of 1D thawing consolidation (the results from the number of ele-

ments with 4, 8, 16 and 32 are presented) . . . . . . . . . . . . . . . . . . . . 142

ix



5.2 The conceptual illustration of the interaction between the local (ᾱ) and global
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Chapter 1

Introduction

1.1 Motivation and objective

Computer models of geological materials are nowadays indispensable for engineers and

researchers to analyze engineering problems, validate designs, and make predictions for

increasingly complex problems. In civil and environmental engineering applications,

many commercial simulation packages such as ABAQUS, FLAC, or Plaxis, have become

default tools for geotechnical engineering and geomechanics analysis. Along with this

trend, a significant portion of research effort in geotechnical engineering has been ded-

icated on developing local constitutive models based on a critical state plasticity frame-

work at the fully drained or undrained limits under the isothermal condition [1–5]. These

models are then embedded in the finite element or finite difference solvers where the

balance of linear momentum is solved in an incremental manner.

Emerging global issues associated with extreme climate events and demanding energy

resources, however, require significant advancements in our knowledge and predictive

capability of complex physical and chemical mechanisms across time and length scales.

These complex processes are difficult to capture locally without considering the length

scales. Furthermore, due to the multiphysical coupling effects, constitutive responses of

a material point is not just influenced by the strain and strain history but is also affected

1



by the diffusion of pore-fluid, crystallization and re-crystallization of crystals in the pore

space, and thermal convection and diffusion among solid and fluid constituents. Hence,

proposing new phenomenological laws alone is no longer sufficient to meet the demand

for the increasingly complex engineering applications, such as geological disposal of nu-

clear waste and carbon dioxide, unconventional hydrocarbon recovery, hydraulic fracture,

thawing problems in permafrost region, artificial ground freezing for construction, and

tunnel and underground facility detection.

This dissertation investigates the development of computational models that capture

coupled thermo-hydro-mechanical-chemical behavior of geological materials across dif-

ferent length scales. To overcome the aforementioned limitations, our research approach

focuses on not just the development of appropriate constitutive laws but also the deriva-

tion of field equations under themultiphysics aspect. The numerical issues and techniques

in calculating themultifield problems are also explored associatedwith finite strain theory,

implementation of solvers, preconditioners, and adaptive mesh refinement. The material

parameter identification process inferred from experiments and the bridging-scale and ho-

mogenization techniques that replicate the interplay between microstructural attributes

and macroscopic responses are also addressed.

1.2 Outline of dissertation

This dissertation explores the theoretical and computational modeling of the critical be-

havior of materials under the coupled multiphysics effects. In particular, the failure

mechanism such as strain localization and fracture behavior are described associated

with thermo-hydro-mechanical influence in geomaterials and crystalline solid. Firstly, we

cover two topics, amultiphase frozen porousmedia and a geological repository for nuclear

waste disposal, respectively. The derivation of governing equations indicates how we

capture the characteristic behaviors such as phase transition and anisotropy. We further
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address the failure mechanism in either macroscopic or microscopic aspects to properly

incorporate physical and chemical phenomena. Next, we delve into the field equations

for saturated porous media under the nonisothermal condition. Here the analytical inves-

tigation is performed to identify the influence of hydraulic and thermal diffusion on the

regularization of the multiphase system under strain softening. We then cover numer-

ical techniques and solution strategies associated with resolving multiphysics problems

such as inf-sup condition, preconditioning, nonlocality, and adaptive finite element sim-

ulations. The following summarizes the outline of this thesis.

In Chapter 2, a stabilized thermo-hydro-mechanical (THM) finite element model is in-

troduced to investigate the freeze–thaw action of frozen porous media in the finite defor-

mation range. By applying the mixture theory, the frozen soil is idealized as a composite

consisting of three phases, i.e., solid grain, unfrozen water and ice crystal. A generalized

hardening rule at finite strain is incorporated to replicate how the elasto-plastic responses

and critical state evolve under the influence of phase transitions and heat transfer. The en-

hanced particle interlocking and ice strengthening during the freezing processes and the

thawing-induced consolidation at the geometrical nonlinear regimes are both replicated.

In Chapter 3, a combined multi-phase-field/crystal plasticity approach for crystalline

solids is described based upon computational thermomechanics. The main objective of

this topic is the computational modeling for crystalline rock salt, which is one of themajor

materials used for nuclear waste geological disposal. Conventionally, this microstructural

effects of rock salt are often incorporated phenomenologically in macroscopic damage

models. Nevertheless, the thermo-mechanical behavior of a crystallinematerial is dictated

by the nature of the crystal lattice and micromechanics (i.e. the slip-system). Here we

employ a crystal plasticity framework in which single-crystal halite is modeled as a face-

centered cubic (FCC) structure with the secondary atoms in its octahedral holes, where a

pair of Na+ and Cl− ions forms the bond basis. Utilizing the crystal plasticity framework,

we capture the existence of an elastic region in the stress space and the sequence of slip
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system activation of single-crystal halite under different temperature ranges. To capture

the anisotropic nature of the intragranular fracture, we couple a crystal plasticity model

with a multi-phase-field formulation that does not require high-order terms for the phase

field.

In Chapter 4, the thermo-hydro-mechanical (THM) coupling effects on the dynamic

wave propagation and strain localization in a fully saturated softening porous medium are

analyzed. The characteristic polynomial corresponding to the governing equations of the

THM system is derived, and the stability analysis is conducted to determine the necessary

conditions for stability in both the non-isothermal and adiabatic cases. The result from

the dispersion analysis based on the Abel–Ruffini theorem reveals that the roots of the

characteristic polynomial for the THM problem cannot be expressed algebraically. Mean-

while, the dispersion analysis on the adiabatic case leads to a new analytical expression

of the internal length scale. Our limit analysis on the phase velocity for the nonisother-

mal case indicates that the internal length scale for the nonisothermal THM system may

vanish at the short wavelength limit. This result concludes that the rate-dependence intro-

duced by multiphysical coupling may not regularize the THM governing equations when

softening occurs. Numerical experiments are used to verify the results from the stability

and dispersion analyses.

In Chapter 5, the numerical techniques and solution strategies for resolving mul-

tiphysics problems are investigated. The numerical system of phase-transiting frozen

porous media in Chapter 2 has been solved in a monolithic way to simultaneously ac-

count for different physical and chemical mechanisms. The stabilized finite element for-

mulation based upon the polynomial projection scheme is proposed, in which the inf–

sup deficiency of equal-order finite element is counterbalanced using stabilization terms

based on the weak two-fold inf–sup condition. Furthermore, the preconditioning strat-

egy for the mixed finite element is introduced to resolve the calculation slow down the

issue in direct solvers due to the ill-conditioned tangent matrix system. The operator-split

4



method to resolve a combined thermomechanics/multiphase damage problems in Chapter

3 is then addressed. For regularization of the numerical system under strain localization

conditions, the micromorphic approach for nonlocal models is further covered associated

with the adaptive mesh refinement techniques. The projection method for global updates

of internal variables located in local quadrature points is further described.

Finally, in Chapter 6, the conclusions of this thesis, with a summary of the main con-

tributions and a description of future work are presented.
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Chapter 2

Computational thermo-hydro-mechanics for phase

transiting multiphase frozen soil in the finite deformation

range

This topic is published as: S.H. Na, W.C. Sun, Computational thermo-hydro-mechanics for

multiphase freezing and thawing porous media in the finite deformation range, Computer

Methods in Applied Mechanics and Engineering, 318(1), 2017, doi:10.1016/j.cma.2017.01.028.

2.1 Introduction

In permafrost regions, soil underneath pavement and concrete structures may experience

freeze-thaw action. During the freezing phase, the crystallization of ice leads to the ex-

panding of voids and micro-cracks in the porous media. When temperature arises, ices

near the heat source may thaw out and turn into meltwater, but this water may be trapped

by the frozen region that remains nearly impermeable. This results in a thaw-weaken soil

that is wet, loose and highly deformable [6–9]. The freeze-thaw action may repeat it-

self everyday due to the temperature difference between day and night near surface, and,

in a larger spatial and time scale, between winter and spring. The accumulated damage

and deterioration of roads, airfields and infrastructure due to freeze-thaw action are of

ultimate importance for vehicle mobility and structural integrity of infrastructure in cold
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region. This demand of understanding the freeze-thaw action of porousmedia undergoing

large deformation is further intensified by the climate changes that bring in more extreme

weather and heavier rains which are expected to accelerate the damages of infrastructure

in alerting speed in the coming decades. For instance, the frost-free season in Fairbanks,

Alaska has been lasted 50 percent longer between 1904 and 2008. The increase of per-

mafrost temperature, which occurs throughout Alaska since the late 1970s, has caused

land subsidence and put public infrastructure, such as roads, runways and sewer system,

at risk [9, 10].

In this chapter we present a finite strain poromechanics theory that fully considers

the thermo-hydro-mechanical coupling effect of the mass-exchanging, phase-transiting

porous media. Previously, significant contributions have been made to derive thermal-

sensitive or degree-of-saturation-sensitive constitutive laws for the frozen soil [11]. These

constitutive laws are often incorporated in thermo-mechanical simulations in which the

presence of unfrozen water is neglected. A notable exception is the work presented in

Nishimura et al. [12] where the infinitesimal strain thermo-hydro-mechanical model is

coupled with a modified Cam-clay model with generalized hardening rules. Unlike the

previous modeling efforts in which the flow of unfrozen water, energy dissipation due

to phase transition and geometrical nonlinearity are neglected (cf. Michalowski and Zhu

[11], Jessberger [13], and McKenzie, Voss, and Siegel [14]), we introduce a new compre-

hensive theory that incorporates all of these important thermo-hydro-mechanical mecha-

nisms into the balance principles (linear momentum, mass, energy) in the finite deforma-

tion range. An implicit total Lagrangian finite element framework is formulated, while

thermal and cryo-suction effects are explicitly captured by a generalized hardening rules

that allow the yield surface to evolve based on the volume fraction of ices in the pore

space and the temperature.

The organization of this chapter is as follows. We first provide the derivation of the

balance principle for frozen soil in the geometrically nonlinear regime (Section 2.2). Then,
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the finite strain elasto-plasticity model with the non-mechanical hardening rule and the

finite strain suction-permeability theory is presented (Section 2.3). Following this is the

total Lagrangian finite element formulation of the thermo-hydro-mechanical model (Sec-

tion 2.4). Numerical examples are then provided (Section 2.5), followed by a conclusion.

2.2 Conservation laws

In this section, we present the balance principle (i.e. linear momentum, mass and energy)

for frozen soil undergoing finite deformation. The soil is idealized as a continuum mix-

ture that consists of three constituents, the liquid water and crystal ice, which occupy

the pores inside the solid skeleton, and the solid constituent that forms the solid skeleton.

Based on the classical thermo-hydro-mechanics theory as reported in the previous stud-

ies [7, 15–20], we present a new derivation that takes account of the heat generated from

plastic dissipation and the thermal-convection to replicate the path-dependent thermo-

hydro-mechanical effect of frozen porous media with infiltrating unfrozen water in the

finite deformation range. The incorporation of geometrical nonlinearity effect is criti-

cal for modeling thawing materials in which the cryo-suction effect often leads to soft

soil that develops large strain. The energy required for the phase transition between ice

and water is incorporated into the balance of energy. Meanwhile we adopt the Taylor-

Quinney coefficient to control the amount of mechanical dissipation converted into heat.

We extend both the net stress theory in Gens [21] and the effective stress theory in Zhou

and Meschke [17] for the finite strain problems. Consequently, the energy dissipation

due to fluid diffusion, thermal convection, phase transition and outward heat flux are all

formulated in the total Lagrangian framework. The implications of these modifications

will be examined via numerical examples.
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2.2.1 Kinematics of three-phase frozen porous media

We consider an idealized kinematics based on the theory of pre-melting dynamics which

elucidates the mechanism of existence of unfrozen water at temperatures below the bulk

freezing point [8, 22]. In addition, the behavior of crystal ice is captured through crystal

ice pressure obtained by the Clausius-Clapeyron equation. This relation is based on ther-

modynamic requirements for equilibrium that needs to be satisfied by crystal ice pressure,

liquid water pressure and temperature in non-isothermal condition [12, 23]. Within this

framework, we adopt the passive air phase assumption. Hence, we neglect the existence

of air in the pore space and consider a three-phase porous medium composed of solid

skeleton, liquid water, and crystal ice [24, 25].

Based on the mixture theory, if the representative elementary volume exists, then the

three-phase material can be idealized as a mixture continuum where each constituent oc-

cupies a fraction of volume at the same macroscopic material point [26–30]. Unlike solid

composite in which one may assume that all constituents at a material point share the

same trajectories until delamination or other forms of failure, the solid and pore-fluid

constituents do not necessarily follow the same trajectory unless the porous medium is

locally undrained. Therefore, the mappings for materials at a point x of the current con-

figuration can be represented from the configuration of solid skeleton (XS), liquid water

(XL) and crystal ice (XC) counterparts:

x = φα (Xα, t) , α = S, L, C. (2.1)

Because the path-dependent constitutive laws and the internal variables that represent

the loading history of the solid skeleton are corresponding to the solid skeleton trajectory,

our formulation will be derived in accordance with the motion of the solid skeleton (φS).

As a result, the motion of liquid water and crystal ice in THM model at finite-strain is

captured by their relative motion with respect to the solid skeleton. The frozen soil with
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three constituents (solid skeleton (S), liquid water (L) and crystal ice(C)) is homogenized

as a continuum. Therefore, the current density field of a porous medium can be written

as,

ρ = ρS + ρL + ρC = ϕSρS + ϕLρL + ϕCρC, (2.2)

where ρα (α = S, L,C) is the partial mass density of constituent α given by ρα = ϕϕρα; ϕα

is the volume fraction of each constituent in the current configuration; ρα is the intrinsic

mass density of each constituent α. By assuming that the pores inside the solid skeleton

are fully saturated with either liquid water or crystal ice, the density of frozen soil mixture

can be obtained by taking the freezing characteristic function. The freezing characteristic

function (SL) indicates the ratio between the volume of liquid water in the void to the total

volume of the void, while the ratio of crystal ice in the total void space is SC = 1 − SL.

The concept of freezing characteristic function is analogous to the water retention curve

of unsaturated porous materials (in Section 2.3.2). Therefore, the total current density of

(2.2) can be also rewritten as,

ρ = ϕSρS + ϕLSLρL + ϕLSCρC = (1− ϕL)ρS + ϕL [SLρL + (1− SL)ρC] . (2.3)

Note that this becomes the total current density of a fully saturated porous medium under

unfrozen state when SL becomes a unity (the pores are fully saturated only with liquid

water).

2.2.2 Balance of linear momentum

To capture the stress status during thawing and freezing, we adopt the Bishop’s effective

stress theory for the frozen soil idealized as a three-phase continuum [31]. In other words,

we assume that the total stress σ can be partitioned into the effective stress σ′ which

evolves due to the deformation and loading history of the solid skeleton, and a net pore

pressure p̄ build up in the void space due to the motion and interaction of the water and
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ice crystal, that is,

σ = σ′ − p̄I, with p̄ = χpL + (1− χ)pC, (2.4)

where the parameter χ is commonly assumed to be equal to the degree of liquid satura-

tion (χ = SL) [32–34] where pL and pC indicate the liquid water and crystal ice pressures,

respectively. Note that I is the second-order identity tensor. This treatment is a simpli-

fication of the actual retention behavior in which the history or path dependence of the

effective stress coefficient χ is neglected. In this formulation, the interaction between

ice crystal and unfrozen water is characterized by a freezing retention curve in an anal-

ogy of the characterization of the water-air interaction via the water retention curve (cf.

O’Neill [35] and O’Neill and Miller [36]). As such, the pore space is assumed to be al-

ways saturated by a combination of two constituents, the ice crystal and unfrozen water.

Furthermore, we follows the treatment in Nishimura et al. [12] and Zhou [37] where the

Bishop’s effective stress principle originally proposed for unsaturated porous media is ap-

plied to capture the interaction among the solid skeleton, ice crystal, and unfrozen water.

It should be noted that while the usage of freezing retention curve and Bishop’s effective

stress theory does imply that the water-ice-skeleton and water-air-skeleton interactions

share similarities, in particular, both of them are determined by pore size distribution and

the water-solid interface tensional force [7, 12, 21, 32], the ice crystal is not considered

as a fluid, and the influence of the presence of ice on the shear strength must be taken

account properly. In this work, this influence is captured via a phenomenological ap-

proach in the framework of finite strain critical state theory. More consistent approach

may require more explicit modeling of the crystallization of ice phase at the pore scales

and treating the ice and solid skeleton as a composite or effective medium composed of

two solid phases [37]. These improvements are out of the scope of this study but will be

considered in future extensions.
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In this work, we adopt the total Lagrangian formulation and hence the model is formu-

lated with respect to the reference configuration of the solid skeleton. Note that the total

Lagrangian formulation is not the only feasible choice. For instance, Sanavia, Schrefler,

and Steinmann [38] has successfully formulated the poromechanics problem in a spatial

setting which results in an updated Lagrangian formulation. Due to the usage of total

Lagrangian formulation in our current work, the balance of linear momentum is written

in terms of the total Piola-Kirchhoff stress tensor, which is related to the first effective

Piola-Kirchhoff stress tensor and the pull back of the contribution from the water and ice

crystal constituents, i.e.,

P = τ · F−T = τ ′ · F−T − Jp̄F−T, (2.5)

where τ = Jσ is the symmetric total Kirchhoff stress tensor, τ ′ = Jσ′ is the effec-

tive Kirchhoff stress tensor (e.g. Diebels and Ehlers [39], Simo [40], Ehlers [41], Sanavia,

Pesavento, and Schrefler [42], Sun, Ostien, and Salinger [43], and Song and Borja [44]).

Therefore, by ignoring the inertia forces, the balance of linear momentum in Lagrangian

form takes the following relation in the reference configuration:

∇X ·P + ρ0G = 0, (2.6)

where ρ0 = Jρ is the pullback of the total mass density which can be determined via (2.3).

2.2.3 Balance of mass

We assume that the porous medium is fully saturated with three constituents, solid (S),

liquid water (L), and crystal ice (C). The possibility of phase transition between liquid wa-

ter and crystal ice is considered. The following derivation is formulated with our choice

of primary variables (solid displacement, liquid phase pressure, and temperature) in mind.

Since the frozen porous media we considered consist of three constituents, one may also
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introduce additional primary variables, such as the degree of saturation or ice phase pres-

sure. However, as we will discuss in Section 2.3, one may also exploit arguments from the

Clausius-Clapeyron equation to eliminate the ice phase pressure from the prime variables

by expressing it as a function of the liquid phase pressure and temperature. This approach

allows us to derive a simplified system of equations with just three prime variables. The

balance of mass for a three-phase solid-water-ice mixture, therefore, can be written as,

DρS

Dt
+ ρS∇x·v = 0, (2.7)

DρL

Dt
+ ρL∇x·v +∇x·

(
ρLvLS

)
= − ◦

mL→C, (2.8)

DρC

Dt
+ ρC∇x·v +∇x·

(
ρCvCS

)
=

◦
mL→C. (2.9)

Here ◦
mL→C is the rate of liquid water mass changing into crystal ice. In general, the

flow of ice with respect to soil skeleton (vCS) is much slower than the flow of liquid ice.

Therefore, we can assume that vCS ≈ 0. Combining (2.8) and (2.9) leads to the following

equation,
DρL

Dt
+
DρC

Dt
+ (ρL + ρC)∇x·v +∇x·

(
ρLvLS

)
= 0. (2.10)

We can consider an equation of state for density/pressure relation through a barotropic

flow assumption (e.g. Sun [19], Sun, Ostien, and Salinger [43], and Song and Borja [44]).

Introducing a bulk modulus for each phase (solid, liquid water, and crystal ice), we expand

the total time derivative of the partial density ρπ as,

DρL

Dt
=
D(ϕLρL)

Dt
= ρL

DϕL

Dt
+ ϕLDρL

Dt
= ρL

(
DϕL

Dt
+
ϕL

KL

DpL
Dt

)
,(2.11)

likewise, DρC

Dt
= ρC

(
DϕC

Dt
+
ϕC

KC

DpC
Dt

)
. (2.12)
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Inserting these relationships into (2.7) and (2.10) gives,

DϕS

Dt
+
ϕS

KS

DpS
Dt

+ ϕS∇x·v = 0, (2.13)

ρL

(
DϕL

Dt
+
ϕL

KL

DpL
Dt

)
+ ρC

(
DϕC

Dt
+
ϕC

KC

DpC
Dt

)
+ (ρL + ρC)∇x·v

+∇x·(ρLvLS) = 0. (2.14)

Taking into account the saturation of liquid water and crystal ice, we use the following

identity:

Dϕπ

Dt
=

D

Dt

[
Sπ(1− ϕS)

]
= (1− ϕS)

DSπ

Dt
− Sπ

DϕS

Dt
, π = L, C, (2.15)

in which, SL is the saturation of liquid water and SC (= 1 − SL) is the saturation of

crystal ice. Combining the equations of (2.13), (2.14), and (2.15) leads to an expression

for the mass balance equation of three-phase porous medium. Note the notation that
˙(·) = D(·)/Dt is used.

ρL

[
(1− ϕS)ṠL +

ϕL

KL
ṗL +

SLϕ
S

KS
ṗS + SL∇x·v

]
+

ρC

[
(1− ϕS)ṠC +

ϕC

KC
ṗC +

SCϕ
S

KS
ṗS + SC∇x·v

]
+∇x·w = 0, (2.16)

where w = ϕLρLvLS. The Piola transform of w is

W = JF−1 ·w, (2.17)

where W and w are the Lagrangian and Eulerian relative mass flow vectors with the

following Piola identity (e.g. Diebels and Ehlers [39], Simo [40], Ehlers [41], Sanavia,
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Pesavento, and Schrefler [42], Sun, Ostien, and Salinger [43], and Song and Borja [44]),

∇X ·W = J ∇x·w. (2.18)

Furthermore, we note that (cf. Song and Borja [44]),

Jṗπ =
˙

(Jpπ)− pπJ̇ , π = S, L, C. (2.19)

Substituting (2.17), (2.18) and (2.19) into (2.16) gives the mass balance equation in the

reference configuration as,

ρL

[
(1− ϕS)ṠLJ +

ϕL

KL

˙pLJ +
SLϕ

S

KS

˙pSJ +

(
SL −

ϕL

KL
pL −

SLϕ
S

KS
pS

)
J̇

]
+ρC

[
(1− ϕS)ṠCJ +

ϕC

KC

˙pCJ +
SCϕ

S

KS

˙pSJ +

(
SC −

ϕC

KC
pC −

SCϕ
S

KS
pS

)
J̇

]
+∇X ·W = 0. (2.20)

Assuming that the change of unfrozen fluid content due to the expansion and contraction

of the constituents of porous medium is negligible compared to that due to changes of

porosity and degree of saturation, mass conservation equation is simplified as,

(1− ϕS)(ρL − ρC)ṠLJ + [ρLSL + ρC(1− SL)] J̇ +∇X ·W = 0. (2.21)

Here the Lagrangian liquid water mass flux after a pull-back operation reads (cf. Sun [19]

and Andrade and Borja [45]),

W = ρLKL ·
(
−∇X pL + ρLF

T ·G
)
, where, KL = JF−1 · k · F−T. (2.22)

The pull-back permeability tensor (KL) is obtained by pulling-back the Eulerian effective

permeability tensor to the reference configuration [43]. The constitutive law for the Eule-
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rian effective permeability tensor (k) in (2.38), which depends on the degree of saturation

of the ice crystal, porosity and temperature will be described in Section 2.3.2.

2.2.4 Balance of energy

For the sake of simplification, the previous efforts on frozen soil modeling often adopt a

balance of energy equation that neglects the contribution of mechanical dissipation, heat

convection, structural heating and the geometrical nonlinearity (cf. Michalowski and

Zhu [11], Nishimura et al. [12], Zhou [37], and Michalowski [46]). This treatment is often

a trade-off between convenience and rigorousness. A well-justified simplification may

allow one to derive analytical solution or at the very least shorten the implementation

time. Nevertheless, the additional assumptions also limit the application of the simplified

thermo-hydro-mechanics theory tomore general situation. For instead, dissipation due to

the frictional shear of the frozen soil may generate heat that melts the portion of ice crys-

tal in the pore space. Flow of unfrozen water that is significantly hotter or colder than

the frozen soil may cause significant change in temperature of the frozen soil, and the

thawing process may weaken the soil and cause the thaw-soil highly deformable. These

mechanisms are important for modeling frozen soil that exhibits path dependent behav-

iors, especially when the hardening/softening mechanism of the frozen soil is sensitive to

the temperature [12]. These reasons above motivate us to derive a version of the balance

of energy that incorporates all the aforementioned mechanisms.

Our starting point is the balance of energy for three-phase frozen soil at finite strains

expressed in the current configuration which reads (cf. Sun [19] and Simo and Miehe

[47]):

JcF Ṫ =

[
−J ∇x· q +

ϕLSLcF L

ρL
Jw · ∇x T

]
+ [Dmech +RT ]. (2.23)

Here we adopt an apparent heat capacity cF , which incorporates both the heat capacity
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of frozen soil and latent heat [14, 48, 49], that is,

cF = cF Sϕ
S + cF L(1− ϕS)SL + cFC(1− ϕS)SC + ρC(1− ϕS)l

∂SL

∂T

= ρScSϕ
S + ρLcL(1− ϕS)SL + ρCcC(1− ϕS)SC − ρC(1− ϕS)l

∂SC

∂T
, (2.24)

where cS, cL and cC are the specific heats of each constituent, and l is the latent heat

of fusion (liquid water and crystal ice). In (2.23), Dmech denotes the contribution to the

dissipation due to pure mechanical load and RT is the heat source term. Assuming that

all constituents of frozen soil follow Fourier’s law, the Cauchy heat flux may be expressed

as the dot product of the gradient of temperature and the effective thermal conductivity

of the multi-phase porous media (κ). In this work, we estimate the effective thermal

conductivity as the geometric mean [50], i.e.,

q = −κ∇x T, κ = κ1−ϕ
S

S κSLϕS

L κSCϕS

C , (2.25)

where κS, κL and κC indicate the isotropic thermal conductivities of solid, liquid water

and crystal ice, respectively. It should be noted that the geometric mean is only one of

the many possible ways to homogenize the thermal conductivity. Another valid choice

can be, for instance, the estimate based on Eshelby equivalent inclusion method (cf. Sun

[19]).

Applying the Piolar-Kirchhoff heat flux Q corresponding (2.25) reads,

Q = −KT · ∇X T, (2.26)

where KT is the pull-back thermal conductivity tensor, that is,

KT = JF−1 · κ · F−T , κ = κI. (2.27)
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(2.23) can be recapitulated in the reference configuration as follows:

JcF Ṫ =

[
−∇X ·Q+

ϕLSLcF L

ρL
W · F−T · ∇X T

]
+ [Dmech +RT ]. (2.28)

where Dmech = βS : DP and β is the Taylor-Quinney coefficient (cf. Taylor and Quin-

ney [51], Stainier and Ortiz [52], and Arriaga, McAuliffe, and Waisman [53]). Here we

assume that the mechanical dissipation of the solid skeleton is primary driven by plastic

work. A more comprehensive study would require the consideration of other dissipa-

tive mechanisms, such as creeping and fracture. Furthermore, it is also possible that the

Taylor-Quinney coefficient of frozen soil can be temperature and strain-rate dependent.

Nevertheless, the identification of the relation among the Taylor-Quinney coefficient and

the temperature and strain-rate requires suitable design of experiments to generate suffi-

cient experimental data. These generalizations of the proposed model will be considered

in the future studies.

2.3 Constitutive model

The balance principle presented in Section 2.2 provides a general description for the three-

phase frozen porous media undergoing large deformation. In this section, we introduce

specific constitutive models to replicate the thermo-hydro-mechanical responses of a soil

undergoing deformation in geometrical nonlinear regime. In particular, we assume that

the soil in the unfrozen and isothermal states may exhibit constitutive responses ade-

quately described by a finite strain Cam-Clay model with an associative hardening rule

(e.g. Borja and Tamagnini [54] and Callari, Auricchio, and Sacco [55]). We then introduce

an additional hardening/softening mechanism which allows the yield surface changes ac-

cording to the degree of saturation of ice crystal to mimic the tensile and enhanced shear

strength due to the presence of ice crystal in the void space. This solid constitutive law is

coupled with the freezing retention model, which relates the degree of saturation of ice
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crystal with temperature and the difference between the ice and pore water pressure.

2.3.1 Constitutive law for skeleton with ice crystals

The finite strain solid constitutive law is derived based on the the infinitesimal-strain gen-

eralized hardening model firstly introduced in Nishimura et al. [12] and further explained

in Gens [21]. This constitutive law has ties to the basic Barcelona model [56] and the gen-

eralized hardening rule [57, 58] in the sense that yield function is expressed not only as a

function of the effective stress invariants and preconsolidation pressure, but also depends

on suction (and indirectly the degree of saturation). As a result, the hardening/softening

of the material can be triggered by a change of the (mechanical) effective stress state as

well as a change on the (non-mechanical) material state (e.g. frozen/unfrozen, chemical

weathering). Here our goal is to extend this model to the finite deformation range, within

the framework of multiplicative plasticity.

As explained in Cuitino and Ortiz [59], one of the key difficulties in introducing consti-

tutive law in the finite deformation range is the cumbersome derivation and implementa-

tion requiring proper linearization of the multiplicative kinematics. One attractive way to

overcome this obstacle is to establish a formal connection between the infinitesimal-strain

constitutive law and the finite-strain counterpart. This idea is not new. For instance, Simo

[40] has shown that in the case of isotropic plasticity, infinitesimal constitutive law can be

extended to a finite strain counterpart by adopting suitable energy conjugated measure.

Borja and Tamagnini [54] introduces an algorithmic design that employs exponential/log-

arithmic mapping and spectral decomposition to derive the analytical consistent tangent

for the Cam-Clay model. Meanwhile, Cuitino and Ortiz [59] introduces a general algo-

rithmic design where one may create a finite-strain version of any constitutive law by

embedding a infinitesimal-strain constitutive law within a three-step framework [54, 59,

60].

This simple and yet efficient approach is used in this study. In the implementation
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process, we first implement an infinitesimal-strain constitutive law with a generalized

hardening rule that depends on the degree of saturation of ice crystal. Following this step,

we introduce additional pre and post-processing steps. In particular, the pre-processing

step allows one to employ logarithmic mapping to project finite strain measures to the

infinitesimal strain counterparts such that infinitesimal-strain constitutive law is used

to generate an incremental stress update. Following this step, the first effective Piola-

Kirchhoff stress tensor can be obtained via the Piola transformation (cf. Cuitino and Ortiz

[59] and Souza Neto, Peric, and Owen [60]). For completeness, this procedure is outlined

below.

(i) Pre-processing. Given incremental displacement∆u, update the deformation gradi-

ent and compute elastic trial state as,

F∆ := I +∇X(∆u), F n+1 := F∆ · F n, Be
b := exp [2εe

n]

Be trial
n+1 := F∆ ·Be

n · (F∆)
T , εe trial

n+1 :=
1

2
ln
[
Be trial
n+1

]
.

(ii) infinitesimal-strain update. The general elastic predictor/return mapping algorithm

using the relationship between τ ′ and ε.

(iii) Post-processing. Update the first effective Piola-Kirchhoff stress tensor (P ′),

P ′
n+1 = τ ′

n+1 · F−T
n+1.

Note that the relationship between τ ′ and ε requires the exact calculation of derivative

of logarithmic tensor or consideration of higher order terms in Taylor expansion while

deriving the consistent tangent stiffness matrix (in Section 2.4.2).

In the infinitesimal-strain algorithm, we employ a two-invariant isotropic hyper-

elasto-plasticity model based on the modified Cam-Clay model with associative flow rule

for the reference unfrozen state [54, 61]. We then extend it to capture the mechanical be-
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havior of the frozen state by introducing the cryo-suction effects (cf. Nishimura et al. [12],

Gens [21], and Zhou [37]). Presumably, it is possible to extend this framework for the non-

associative plasticity models, which may capture the constitutive responses more closely

than the associative counterpart. However, in such cases, the restriction imposed by the

principle of maximum plastic dissipation must be carefully considered before incorporat-

ing non-associative flow rule into the balance of energy equation [62]. This extension is

out of the scope of this study, but will be considered in the near future.

Our starting point is to consider the frozen soil as a three-phase porous medium that

consists of two constituents that can be viewed as the same two-phase media in two

different phase regions (i.e. liquid vs. crystalline solid). An important implication is

that one may use the corresponding thermodynamically-consistent Clausius–Clapeyron

equation to establish relation among crystal ice pressure (pC), liquid water pressure (pL)

and temperature (T ) [12] at the thermodynamics equilibrium, i.e.,

pC =
ρC
ρL
pL − ρCl ln

(
T

273.15

)
, (2.29)

where the unit of temperature is in Kelvin and l is the specific latent heat of fusion. Notice

that, in (2.29), the ice pressure is a function of pore water pressure, temperature and the

densities of both ice crystal and the unfrozen water. Due to the usage of the exponen-

tial/logarithmic mapping, both the ice and pore water pressure described above and the

constitutive relation is described in the infinitesimal strain setting. The elastic responses

of the frozen soil are replicated by an isotropic hyperelasticity model (cf. Borja [61] and

Borja, Tamagnini, and Amorosi [63]), with a modification such that the volumetric con-

stitutive law depends on the amount of cryo-suction pressure, i.e.,

p′ = kscryo + (p0 − kscryo) exp
(
εv0 − εev
cr

)
, q = 3µεes, (2.30)

where p0 is the reference pressure; scryo is the cyo-suction given by scryo = max(pC−pL, 0);
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k is the parameter describing the increase in cohesion with suction (cf. Alonso, Gens, and

Josa [64]); εv0 is the reference volumetric strain; cr is the elastic compressibility parame-

ter (or recompression index); εev and εes are the volumetric and deviatoric strain invariants

of the elastic logarithmic strain, respectively; and µ is the elastic shear modulus. Note

that the freezing and thawing processes should influence both the stiffness and strength

of the three-phase frozen porous media. In this work, our focus is mainly on the latter,

following the treatment of [12]. Nevertheless, a more comprehensive treatment can be

also made by considering that the change of degree of ice saturation affects the elastic

stiffness. This can be done via a purely phenomenological approach if sufficient experi-

mental data are available or based on a theoretical approach, such as Eshelby’s equivalent

inclusion method (e.g. Zhou and Meschke [17] and Zhou [37]). The yield surface of the

frozen soil that incorporates the cryo-suction effect is represented as follows,

f =

[
p′ −

(
pc + kscryo

2

)]2
+

q2

M2
−
(
pc − kscryo

2

)2

, (2.31)

where pc is the preconsolidation stress; M is the slope of critical state line; and p′ and q

are the mean normal and deviatoric stresses as defined below,

p′ =
1

3
tr(τ ′), q =

√
3

2
∥ ξ ∥, ξ = τ ′ − p′I. (2.32)

Figure 2.1 indicates how the yield surface and critical state line change from unfrozen to

frozen state. We can identify that frozen soil holds stable without the confining pressure

due to the apparent cohesion by cryo-suction. We note that the preconsolidation stress

(pc) is assumed to be independent upon temperature (cf. Nishimura et al. [12]).

In the return mapping algorithm for the two-invariant plasticity model, we adopt the

hardening law proposed in Borja and Tamagnini [54], Borja [61], Butterfield [65], and
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Figure 2.1: Change of the yield surface from unfrozen (T > 0 ◦C) to frozen state (T =
−2 ◦C) – tension is positive

Hashiguchi [66, 67] which takes the following form,

ν̇

ν
= −cc

ṗc
pc
, (2.33)

where ν is the specific volume of the soil; cc is a compressibility index (or compression

index). This hardening law allows the hardening parameter pc to be expressed exactly as

a known function of the plastic volumetric strain εpv as,

ṗc = −
ε̇pv

cc − cr
pc, (2.34)

under the condition of 0 < cr < cc [54, 61]. Therefore, we employ the residual vector (r)

and unknown vector (x) for a local Newton’s iteration as follows:

r =


εev − εe trial

v +∆λ∂p′f

εes − εe trial
s +∆λ∂q′f

f

 ; x =


εev

εes

∆λ

 ; a = r′ (x) , (2.35)

where∆λ is the incremental plastic multiplier; f is the yield function in (2.31), while ∂p′f

and ∂qf indicate the derivative of f with respect to p′ and q, respectively; a is the local
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consistent tangent operator. More details regarding the process of the return mapping

algorithm presented herein can be found in Borja and Tamagnini [54]. Note that the cryo-

suction pressure (scryo) in the local Newtonmapping algorithm adopts the global variables

of liquid water pressure pL and temperature T (for pC). As the thermal and hydraulic

convection-diffusion takes place in the porous media, these two physical quantities are

determined not solely from a local material state, but also dependent on the material state

of the neighborhood. Through the thermo-hydro-mechanical coupling effect, these non-

local effects may affect the path-dependent responses [20].

2.3.2 Freezing characteristic function for frozen soil

In the unsaturated soil mechanics, the water retention curve or the soil-water character-

istic function can be derived from the liquid-air interface energy between gas and liquid

phases coexisting in the pores. This concept can be expanded to a three-phase frozen

soil in which the frozen soil is idealized as a solid-ice-water mixture. In this case, one

relates the difference between the pressure of the ice crystal and the unfrozen water with

the degree of saturation of liquid or ice crystal while neglecting the presence of water

or vapor in the pores (e.g. O’Neill [35] and O’Neill and Miller [36]). The similarity of

the soil retention characteristic to the soil moisture characteristic has been studied in a

number of previous studies such as Koopmans and Miller [68] and Spaans and Baker [69].

Assume that pre-melting theory is valid such that thin water film exists in between the

ice crystal and solid skeleton, one important mechanism that leads to this similarity is

the relative small water-ice interfacial force compared to the water-solid interfacial force.

This allows the absorptive forces dominate. Since adsorptive forces only act on the liquid

phase, whether ice or air is present at the other side of the water-solid interface does not

affect the retention significantly. Consequently, the ice-water interfacial energy can be

neglected.

Mimicking the air-water-suction relation in the van Genuchten retention model (cf.
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VanGenuchten [70]) and neglecting the hysteresis due to the dissipation during the freeze-

thaw cycles, one may introduce a non-hysteretic phenomenological characteristic func-

tion to relate the liquid water saturation with the pressure difference between the crystal

ice and the liquid water (pC − pL > 0), which is cryo-suction [12, 37], i.e.,

SL =
[
1 +

(scryo
P

)n]−m
, scryo = max(pC − pL, 0), (2.36)

in which P , n andm are material parameters. P is a scaling parameter, and n andm are

empirical constants defining the shape of the freezing characteristic curve (m = n−1
n

). We

note that the capillary suction pressure in the water retention curve by Van Genuchten

[70] for unsaturated soil is replaced by the cryo-suction for saturated frozen soil [12]. We

remark that other models for freezing characteristic function can be used (e.g. O’Neill and

Miller [36] - using a given value of water content and the porosity; Zhou [37] - a simpli-

fied temperature only model). Finally, one may substitute (2.29), the Clausius–Clapeyron

equation, into (2.36) to express the freezing characteristic function of (2.36) as a relation

among the degree of saturation of liquid water (SL), pore water pressure (pL) and the

temperature (T ) when scryo > 0, that is,

SL =

[
1 +

[
−(1− ρC/ρL)pL − ρCl ln(T/273.15)

P

]n]−m
, (2.37)

where the unit of temperature T is Kelvin; l stands for the latent heat of fusion. In the

numerical examples shown in Section 2.5, we adopted the parameter n = 2.0, the refer-

ence pressure P = 200 kPa and the latent heat of fusion l = 334 kJ/kg (cf. Nishimura

et al. [12]). The freezing characteristic function becomes a unity when T > 0 ◦C, which

leads to unfrozen state fully saturated only with liquid water (SL = 1.0). Figure 2.3.2 (a)

shows how the freezing characteristic function varies by temperature (T ) and liquid water

pressure (pL). It should be noted that the pore pressure dependence of the freezing char-

acteristic function remains important near the phase transition temperature but exhibits
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relatively minor impact on the degree of saturation of water once the phase transition

completes [12].

The constitutive law for the flow of the unfrozen water is assumed to be Darcian. We

adopt the saturation-dependent relative permeability (e.g. Luckner, Van Genuchten, and

Nielsen [71]) and the temperature-dependent viscosity (e.g. Grant [72]). As a result, for

the unfrozen water, the evolution of hydraulic conductivity tensor (k) is formulated using

the relation below,

k =
kr
µr

kL, (2.38)

where kr and µr are the relative permeability and the temperature-dependent viscosity,

respectively. kL is the isotropic hydraulic conductivity tensor at the reference tempera-

ture. Meanwhile, the relative permeability and the temperature-dependent viscosity are

empirical relations that read,

kr =
√
SL

[
1−

(
1− S1/m

L

)m]2
, µr = 1.5963× 10−2 exp

(
509.53

T − 150

)
. (2.39)

Herem is a material parameter described above (m = n−1
n

), T is the temperature in Kelvin

and SL is the saturation of liquid water described by freezing characteristic function [17,

72]. Figure 2.3.2 (b) presents how the relative permeability (kr) changes under various

liquid water pressure and temperature conditions. The relative permeability is highly sen-

sitive to the change of liquid water pressure and temperature. Nevertheless, the relative

permeability and hence the hydraulic conductivity approach to zero once the temperature

is lower than approximately −2 ◦C regardless of the liquid water pressure. Meanwhile,

a decrease in temperature will also reduce the viscosity. These two mechanisms make it

difficult for the supercooled water to flow as the temperature drops.
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Figure 2.2: (a) Freezing characteristic function (SL, degree of saturation) and (b) Relative
permeability (kr) under different liquidwater pressure (pL) and temperature (T ) conditions

2.4 Variational formulation

In this section, we introduce the variational form, the corresponding equal-order

displacement-liquid water pressure-temperature finite element implementation, and the

corresponding stabilization procedure of the thermo-hydro-mechanical model for frozen

soil undergoing finite deformation range. We first define the standard weak form of the

poromechanics problem based on the conservation laws derived in Section 2.2.

2.4.1 Galerkin form

We proceed the numerical implementation by deriving a weighted residual statement suit-

able for a total Lagrangian formulation. Firstly, we can consider a reference domain B

whose boundary ∂B is composed of the Dirichlet and von Neumann boundaries as,

∂B = ∂Bu ∪ ∂Bt = ∂BpL ∪ ∂BQpL
= ∂BT ∪ ∂BQT

, (2.40)

∅ = ∂Bu ∩ ∂Bt = ∂BpL ∩ ∂BQpL
= ∂BT ∩ ∂BQT

, (2.41)
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where ∂Bu is the solid displacement boundary; ∂Bt is the solid traction boundary; ∂BpL

is the liquid water pressure boundary; ∂BQpL
is the liquid water fluid flux boundary; ∂BT

is the temperature boundary; ∂BQT
is the heat flux boundary. Dirichlet boundary condi-

tions of the thermo-hydro-mechanical (THM) problem for frozen soil read,


u = u on ∂Bu,

pL = pL on ∂BpL ,

T = T on ∂BT .

(2.42)

Meanwhile, the von Neumann boundary conditions that describe the traction and fluxes

read,


P ·N = t on ∂Bt,

−N ·QpL = QpL on ∂BQpL
,

−N ·QT = QT on ∂BQT
,

(2.43)

where N is the outward normal vector on the reference configuration ∂B. In addition,

we consider the trial space for the weak form that reads,

Vu =
{
u : B→ R3|u ∈ [H1(B)]3, u|∂Bu = u

}
, (2.44)

VpL =
{
pL : B→ R|pL ∈ H1(B), pL|∂BpL

= pL
}
, (2.45)

VT =
{
T : B→ R|T ∈ H1(B), T |∂BT

= T
}
. (2.46)

Here, H1 denotes the Sobolev space of degree one. The admissible variations of the dis-

placement η, liquid water pressure ψ and temperature θ read,

Vη =
{
η : B→ R3|η ∈ [H1(B)]3, η|∂Bu = 0

}
, (2.47)

Vψ =
{
ψ : B→ R|ψ ∈ H1(B), ψ|∂BpL

= 0
}
, (2.48)
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Vθ =
{
θ : B→ R|θ ∈ H1(B), θ|∂BT

= 0
}
. (2.49)

Therefore, the weighted residual statement of the balance of linear momentum, mass and

energy are: find u ∈ Vu, pL ∈ VpL and T ∈ VT such that for all η ∈ Vη , ψ ∈ Vψ and

θ ∈ Vθ,

G (u, pL, T,η) = H (u, pL, T, ψ) = L (u, pL, T, θ) = 0, (2.50)

where G : Vu × VpL × VT × Vη → R is the weak statement of the balance of linear

momentum, that is,

G (u, pL, T,η) =

∫
B

(
∇X η : P − Jρη ·G

)
dV −

∫
∂Bt

η · tdΓ. (2.51)

H : Vu × VpL × VT × Vψ → R is the weak statement of the balance of mass, that is,

H (u, pL, T, ψ) =

∫
B

ψ
[
(1− ϕS)(ρL − ρC)ṠL

]
JdV +

∫
B

ψ [ρLSL + ρC(1− SL)] J̇dV

−
∫
B

∇X ψ ·W dV −
∫
∂BQp

ψQpdΓ. (2.52)

And L : Vu × VpL × VT × Vθ → R is the weak statement of the balance of energy, that is,

L (u, pL, T, θ) =

∫
B

θ (JcF ) Ṫ dV +

∫
B

∇X θ ·KT · ∇X TdV (2.53)

−
∫
B

θ

(
ϕLSLcF L

ρL
W · F−T · ∇X T

)
dV −

∫
∂BQT

θQTdΓ.

2.4.2 Consistent linearization

Since we use an implicit time integration scheme to solve the system of equations, it is

essential to either approximate or obtain the exact expression of the consistent tangent

such that the solution fields of u, pL, and T can be updated in an incremental fashion.
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Here we perform the consistent linearization of the weak form (2.51), (2.52) and (2.53)

with respect to variation of displacement, pore pressure and temperature. We first focus

on the linearization of momentum balance equation which adopts the infinitesimal strain

algorithm including the pre and post– processing steps. This can be represented as:

δG (u, pL, T,η) =

∫
B

∇X η : A : δF dV −
∫
B

∇X η : δ(JF−Tp̄)dV

−
∫
B

η · δ (JρG)−
∫
∂Bt

η · δtdΓ = 0, (2.54)

whereA in the first term is defined as in (2.55) below. The partial derivative of the effective

first Piola-Kirchhoff stress with respect to the deformation gradient or other tangential

stiffness tensor stemmed from other energy-conjugate pair must be sought, that is,

A ≡ ∂P ′

∂F
, P ′ = Jσ′ · F−T = τ ′ · F−T. (2.55)

Expressing A in terms of index notation using the effective Kirchhoff stress τ ′ and con-

sidering two point tensors F and P ′ yield,

AiMkN =
∂P ′

iM

∂FkN
=

∂τ ′ip
∂FkN

F−1
Mp + τ ′ip

∂F−1
Mp

∂FkN
. (2.56)

Note that the difference of F−1 and F−T should be considered in tensor and index nota-

tions,

F−1 = F−1
Ji GJ ⊗ gi, F−T = F−1

Ji gi ⊗GJ , (2.57)

where gi and GJ stand for the basis vectors of current and reference configurations, re-

spectively. An logarithmic/exponential mapping is employed to allow infinitesimal strain

constitutive law extended into the geometrical nonlinear regime [40, 59]. As a result, the

Kirchhoff stress in the first term of (2.56) can be updated by means of the incremental
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constitutive function of small strain algorithm (τ̃ )

∂τ ′

∂F
=

∂τ̃

∂ϵe trial :
∂ϵe trial

∂Be trial :
∂Be trial

∂F
, (2.58)

where,

∂τ̃

∂ϵe trial = D = the infinitesimal elastoplastic consistent tangent modulus,(2.59)

∂ϵe trial

∂Be trial = L =
∂ lnBe trial

∂Be trial , (2.60)

∂Be trial

∂F
= B, BipkN = δik

(
F e trial)

pN
+ δpk

(
F e trial)

iN
, (2.61)

by the definition of the left Cauchy-Green tensor B.

As stated, D can be obtained from the infinitesimal-strain constitutive model in Section

2.3.1. More details regarding the process of deriving the consistent tangent operator D can

be found in Borja and Tamagnini [54]. In the second term of (2.56), the tensor derivative

of the inverse of deformation gradient can be derived using the derivative of the second

order identity tensor, which gives:

∂F−1
Mp

∂FkN
= −F−1

MlδlkδMNF
−1
Mp = −F

−1
MkF

−1
Np . (2.62)

Note that the linearization for update of the effective first Piola-Kirchhoff stress (P ′) in

(2.55) includes not only the consistent tangent operator from the infinitesimal-strain con-

stitutive model (2.59) but other terms as in (2.56) to (2.62) to be represented in the to-

tal Lagrangian framework considering the geometrical nonlinearity at finite deformation

regime. As stated, the associative flow rule is used and the general elastic predictor/return-

mapping algorithm is adopted through the relationship between the Kirchhoff stress (τ ′)

and the elastic logarithmic strain (ε = 1
2
lnB), from the leftCauchy-Green tensorB. Note

again that this relation requires the exact calculation of derivative of logarithmic tensor
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or consideration of higher order terms in Taylor expansion while deriving the consistent

tangent stiffness matrix. The following relations can be used for linearization [44]:

δF = ∇X (δu) , δF−1 = −F · ∇x (δu) , δJ = J ∇x· (δu) , (2.63)

wherewe recall the following identities [73, 74]: ∇x(δu) = ∇X(δu)·F−1 and∇x·(δu) =

∇X(δu) : F−T. Next the linearization of the mass balance equation reads:

δH (u, pL, T, ψ) = δ

(∫
B

ψ
[
(1− ϕS)(ρL − ρC)ṠL

]
JdV

)
+δ

(∫
B

ψ [ρLSL + ρC(1− SL)] J̇dV

)
−
∫
B

∇X ψ · δW dV −
∫
∂BQp

ψδQpdΓ, (2.64)

where the linearization of SL can be conducted by considering a function of pL and T as

in (2.37). In addition, we can use the relation J̇ = J ∇x· u̇ and ∇x· u̇ = ∇X u̇ : F−T

[74]. The linearization of the Lagragian relative liquid water mass flux, W , requires the

linearization of the pull-back permeability tensor KL, which is represented based on k

in (2.38), that is,

δKL = δ
(
JF−1 · k · F−T) = δ (J)F−1 · k · F−T + Jδ

(
F−1

)
· k · F−T

+JF−1 · δ (k) · F−T + JF−1 · k · δ
(
F−T) , (2.65)

with δ(k) =
∂k

∂kr
δkr +

∂k

∂µr
δµr =

kL

µr

∂kr
∂SL

δSL +

(
−kr
µ2
r

kL

)
∂µr
∂T

δT

=
kL

µr

∂kr
∂SL

∂SL

∂pL
δpL

+

[
kL

µr

∂kr
∂SL

∂SL

∂T
+

(
−kr
µ2
r

kL

)
∂µr
∂T

]
δT. (2.66)

Finally the linearization of energy balance equation can be performed as the same
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procedure for momentum and mass balance equations, that is,

δL (u, pL, T, θ) =

∫
B

θδ
(
JcF Ṫ

)
dV +

∫
B

∇X θ · δ
(
KT · ∇X T

)
dV (2.67)

−
∫
B

θδ

(
ϕLSLcF L

ρL
W · F−T · ∇X T

)
dV −

∫
∂BQT

θδQTdΓ.

Note that the linearization of KT can be sought considering (2.25) and (2.27) following

the procedure for the pull-back permeability tensor in (2.65).

2.4.3 Time discretization

In order to solve the transient boundary value problem, the weak statement in (2.50) is

discretized in time. In this implementation, the solution is incrementally advanced via

the backward Euler scheme following Sun, Ostien, and Salinger [43] and Sun [19]. The

time-discretized weighted-residual form reads,

Ĝ (un+1, pLn+1, Tn+1,η) = Ĥ (un+1, pLn+1, Tn+1, ψ) = L̂ (un+1, pLn+1, Tn+1, θ) = 0,(2.68)

where the discrete weak form of the balance of linear momentum now reads

G (un+1, pLn+1, Tn+1,η) =

∫
B

[
∇X η : P n+1 − (Jn+1ρn+1)η ·G

]
dV

−
∫
∂Bt

η · tn+1dΓ. (2.69)

Similarly, the discrete weak from of the mass and energy balance equations can be repre-

sented as

H (un+1, pLn+1, Tn+1, ψ) =

∫
B

ψ

[
(1− ϕS

n+1)(ρL − ρC)
(SL)n+1 − (SL)n

∆t

]
Jn+1dV

+

∫
B

ψ [ρLSL + ρC(1− SL)]n+1 Jn+1
∇X (un+1 − un)

∆t
: F−T

n+1dV
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−
∫
B

∇X ψ ·W n+1dV −
∫
∂BQp

ψQpn+1
dΓ, (2.70)

L (un+1, pLn+1, Tn+1, θ) =

∫
B

θ (Jn+1cFn+1)
Tn+1 − Tn

∆t
dV

+

∫
B

∇X θ ·KTn+1 · ∇X Tn+1dV

−
∫
B

θ

[(
ϕLSLcF L

ρL

)
n+1

W n+1 · F−T
n+1 · ∇X Tn+1

]
dV

−
∫
∂BQT

θQT n+1dΓ. (2.71)

2.4.4 Spatial discretization

In this study, we introduce the standard shape functions of equal-order interpolation (lin-

ear) to the testing functions and field variables. Therefore, the following approximations

are adopted:



u ≈ uh =
n∑
a=1

N aua,

pL ≈ phL =
n∑
a=1

NapLa,

T ≈ T h =
n∑
a=1

NaTa,



η ≈ ηh =
n∑
a=1

N aηa,

ψ ≈ ψh =
n∑
a=1

Naψa,

θ ≈ θh =
n∑
a=1

Naθa.

(2.72)

Here the superscript h indicates a spatially discretized function; Na is the shape function

matrix; ua, pLa and Ta are the nodal values of displacement, liquid water pressure, and

temperature; ηa, ψa and θa denotes the nodal values of corresponding test functions; n

indicates the number of node per element. We can substitute the approximations of (2.72)

into (2.68) and take Ĝ, Ĥ and L̂ as residuals of the full discrete system of equations for

THM problems. This leads to three-field mixed finite element formulations of the thermo-

hydro-mechanical model for frozen soil in which the Jacobian system in each Newton
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update has a following form:


A B1 D1

B2 C E1

D2 E2 F



δu

δpL

δT

 = −


Rmom.

Rmas.

Rene.

 . (2.73)

Note that the Jacobian has a three by three block structure; δu, δpL, δT are the nodal incre-

mentals over given time interval for displacement, liquid water pressure and temperature

fields; Rmom., Rmas., Rene. are residuals expressed by the balance of linear momentum, mass

and energy as in (2.68) to (2.71). For a detailed expression of 3 × 3 Jacobian, please refer

to [75].

2.5 Numerical examples

We conducted four numerical simulations to test the applicability and robustness of the

proposed thermo-hydro-mechanical model for frozen soil. Through these models, we an-

alyze the geometrical effect during thawing by comparing results from infinitesimal and

finite strain simulations. We demonstrate how the plastic dissipation influences the three-

phase frozen porous medium at finite deformation range, and validate our predictions

with experimental results. The first two examples are selected to analyze and validate

the simulated phase-transition effect during the freezing and thawing processes. In the

first example, we idealize the frozen soil deposit as a one dimensional domain subjected

to an increased temperature at the top of the surface with drained boundary condition.

Due to the temperature difference, heat flux developing on the top of the deposit leads to

the thawing and therefore the ground consolidates until the steady state is reached. In

another related example, we decrease the temperature at the top surface of a unfrozen

soil deposit so that the outflow heat flux may instead lead to the freezing process starting

at the top and developing through depth of the domain. The third example is adopted
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a well injection problem. We formulate the frozen ground with a well at the center and

apply both pore flux and temperature gradient to mimic the injection of hot water. In the

last example, we examine the formation of shear band and the influence of plastic dissi-

pation in a biaxial compression test. We vary the Taylor-Quinney coefficient and re-run

the simulations to obtain the axial stress-displacement curve of the sample and analyze

the effect of plastic dissipation. In addition, we obtain the shear band under different

combinations of thermal conductivity and permeability to see how thermal and hydraulic

couplings influence the regularization of THM formulation for frozen porous media.

2.5.1 Thawing consolidation of frozen ground

In this numerical example, we simulate a thawing consolidation process of frozen ground

by a raised temperature prescribed at the top surface. The purpose of this example is to

validate the numerical model and demonstrate the performance of numerical formulation

when phase transition from crystal ice to liquid water occurs. It should be noted that

other experimental data such as those reported in Zhang et al. [76] can also be used for

validation purpose. We discretize the three-dimensional domain and fix the displacement

at the bottom and radial surfaces to simulate an 1-D consolidation induced by thawing.

The domain of frozen soil sample has a height of 10 cm and a cross-section of 0.3 × 0.3

cm2 following the previous experimental set up by Yao, Qi, and Wu [77].

Figure 2.3 (a) shows the schematic diagram and test conditions. The initial temperature

of the domain except the top surface is−1 ◦C and the surcharge load of 50 kPa is applied.

Meanwhile, the temperature at the top surface is prescribed to be 20 ◦C with a drained

condition by imposing zero pore pressure. The bottom end is kept at−1 ◦C and the radial

surfaces are insulated and assumed to be undrained to consolidate only through the top

surface. As a result of this setup, thawing consolidation progresses in time until a new

isothermal status is reached. The material properties of solid, liquid water and crystal ice

used in the simulations including the hydraulic conductivity of 7.0 × 10−9 m/s can be
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found in detail from Yao, Qi, and Wu [77].

Figure 2.3 (b) shows the thawing settlement results obtained from both infinitesimal

and finite strain simulations. In addition, the experimental results along with the pre-

vious numerical analyses performed by Yao, Qi, and Wu [77] are also presented in the

same figure. This simulation is performed under the elastic range and we obtained the

settlement at the top surface along with time. Both current infinitesimal and finite strain

model show good agreement with the previous experiment data. Furthermore, we can

identify that the infinitesimal strain model predicts larger vertical settlement compared

to the corresponding finite strain model due to geometrical non-linearity effect (e.g., Li,

Borja, and Regueiro [78]).
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Figure 2.3: Schematic diagram of thawing simulation with boundary conditions (a) and
the comparison of thawing settlement results (b) with the previous research [77]

2.5.2 Soil freezing from unfrozen state

In addition to the thawing simulation, the soil freezing test under 1-D heat flux condition

is also conducted to check the numerical implementation regarding phase transition from

unfrozen to frozen states. This example can be considered as an opposite situation of the

previous numerical experiment of which the concept is adopted from the previous study
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Table 2.1: Reference input parameters of homogeneous numerical model for material sen-
sitivity test

Parameter Description Value Unit
ρS Mass density of solid 2.7 Mg/m3

ρL Mass density of liquid water 1.0 Mg/m3

ρC Mass density of crystal ice 0.9 Mg/m3

cS Specific heat of solid 900 kJ/Mg/K
cL Specific heat of liquid water 4,180 kJ/Mg/K
cC Specific heat of crystal ice 2,100 kJ/Mg/K
κS Thermal conductivity of solid 3.0×10−3 kW/m/K
κL Thermal conductivity of water 0.6×10−3 kW/m/K
κC Thermal conductivity of crystal ice 2.2×10−3 kW/m/K
ϕ Initial porosity 0.3 -
k Intrinsic permeability 1.0×10−12 m2

µ0 Viscosity (at 0 ◦C) 1.8×10−6 kPa·s
cr Recompression index 0.035 -
cc Compression index 0.30 -

by Zhou [37]. Likewise in the schematic in Figure 2.3, we formulated three dimensional

domain and fixed the bottom and radial surface displacement. With the initially unfrozen

condition with temperature of 2 ◦C, we lower the temperature at the top to −2 ◦C so

that the freezing process mobilizes to downward. The temperature at the bottom surface

is fixed with 2 ◦C and the radial surfaces are insulated. Table 2.1 describes the input

parameters used in this numerical simulation. We prescribed the impermeable boundary

conditions except the bottom surface with drained condition (pL = 0) to allow water

supply.

The first column in Figure 2.4 shows the temperature profile along the depth in dif-

ferent times. We can see that the temperature reaches the steady state after 20 hours.

The second column shows the suction pressure profile with different times in depth. It is

observed that cryo-suction due to freezing is developed and progressed downward along

the time. In addition, frost heaving or volume expansion due to freezing in frozen porous

medium is captured through the change of porosity in the third column. The last column

shows how the freezing fringe changes along with time through the ice saturation profile.
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Figure 2.4: Transient responses of the freezing soil - changes of temperature, cryo-suction,
porosity and ice saturation

2.5.3 Injecting unfrozen fluid in frozen ground

To demonstrate the forward-prediction capacity of the proposed model, an injection well

problem is replicated numerically. Figure 2.5 shows the schematics of the current problem.

Due to rotational symmetry, only a quarter of the domain is considered. The domain is

defined by the length (L) of 0.38 m and the injection well radius (R) of 0.03 m. The

initial temperature condition was set to −2 ◦C. The outer boundaries are assumed to be

impermeable and insulated and mechanically confined with the pressure (p0) of 100 kPa.

We assumed the type of frozen soil as a lightly overconsolidated clay (OCR = 1.5), and the

mechanical, hydraulic and thermal properties are described in Table 2.2.

We conducted the preliminary test prescribing the fluid flux without temperature

change, and the constant mass flux of 0.001 cm2/sec. was selected which had little in-

fluence (no equivalent plastic strain) on the domain during the given time (up to 10 hours

from the initial state). Then we prescribed the fluid mass flux with temperature increase

around the well surface to induce the inelastic behavior vicinity of the well causing the
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Figure 2.5: Schematics of injection well simulation: a quarter of the domain (the domain
length, L = 0.38 m; the radius of injection well, R = 0.03 m; the confining pressure, p0 =
100 kPa) was simulated from the initial temperature (Ti) of−2 ◦C.The temperature of the
fluid mass flux (f = 0.001 cm2/sec.) was increased to 1 ◦C

plastic deformation. First of all, we compare the numerical results from infinitesimal and

finite strain models. Figure 2.6 presents the thermo-hydro-mechanical behavior of injec-

tion well at different time for each model. As can be expected, phase transition zones

expand after 10 hours from the initial state due to heat transfer. The increase of temper-

Table 2.2: Mechanical, hydraulic and thermal input parameters for injection well problem

Parameter Description Value Unit
ρS Mass density of solid 2.7 Mg/m3

ρL Mass density of liquid water 1.0 Mg/m3

ρC Mass density of crystal ice 0.9 Mg/m3

cS Specific heat of solid 900 kJ/Mg/K
cL Specific heat of liquid water 4,190 kJ/Mg/K
cC Specific heat of crystal ice 2,095 kJ/Mg/K
κS Thermal conductivity of solid 1.27×10−3 kW/m/K
κL Thermal conductivity of water 5.80×10−3 kW/m/K
κC Thermal conductivity of crystal ice 2.20×10−3 kW/m/K
ϕ Initial porosity 0.3 -
k Intrinsic permeability 1.0×10−15 m2

µ0 Viscosity (at 0 ◦C) 1.8×10−6 kPa·s
cr Recompression index 0.03 -
cc Compression index 0.13 -
pc Preconsolidation stress 150 kPa
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ature makes the crystal ice into liquid water through the freezing characteristic function

(2.37), which leads to the change of liquid water pressure reflected on stream line configu-

ration. Therefore, we can see the different phases from both the temperature contour and

the hydraulic stream line induced by injecting unfrozen water around the well surface.

With respect to the comparison of infinitesimal and finite strain model, we can see the

little difference in heat transfer from temperature contours. However, the expansion of

liquid water stream line is delayed in finite strain model compared to that from the in-

finitesimal model. This can be explained by the effect of geometrical nonlinearity, as we

observed in Section 2.5.1 that the finite strain model estimates less settlement due to geo-

metrical nonlinear effect [77, 78]. The more distinct difference between the infinitesimal

and finite strain models is observed as the time progresses (Figure 2.6).

Next we analyze the effect of latent heat reflected on apparent heat capacity. In the

concept of apparent heat capacity, the freezing characteristic function is introduced into

heat capacity to incorporate the phase transition effect in the energy balance equation

(2.23). Therefore, the effective specific heat of the frozen soil system changes along the

temperature change. When the temperature ranges around 0.0 to −2.0 where the freez-

ing characteristic function shows significant changes, the increase of effective specific

heat of the system delays the heat transfer to account for the latent heat effect in phase

transition. We note that the effect of latent heat due to phase transition is evaluated quali-

tatively. This consideration may play an important role in changes of temperature profile

with time diffuse and related pore pressure distributions, elastic and inelastic behaviors

for the frozen soil [79, 80]. Figure 2.7 shows how the apparent heat capacity influences

the heat transfer and the frozen soil system. At the same time step, the heat transfer de-

velops much faster when the latent heat effect is not considered. These are depicted both

on temperature contour line and liquid water stream line. Moreover, as the phase tran-

sition zone further expands under the no latent heat effect model, the higher equivalent

plastic strain is concentrated around the well surface. This can be further explained from
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Figure 2.6: Thermo-hydro-mechanical behavior of frozen soil in the injectionwell problem
- different phase zones indicated by the temperature contour and liquid water stream line
under (a) infinitesimal and (b) finite strain models

the constitutive model (2.31), which includes the temperature change upon the yield sur-

face size due to the cryo-suction. In other words, the increase of temperature accelerates

the plastic behavior by shrinking the yield surface as an recursive process. We further

present the influence of latent heat effect on the mechanical behavior along the time in

Figure 2.8. Along with the prescribed temperature boundary condition, the changes of

temperature around 0.03 m away from the well surface with time are described in Figure

2.8 (a) to evaluate the consideration of latent heat. While the region around the well sur-

face becomes unfrozen state in 1 hour when the latent heat is ignored, the heat transfer is
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delayed and the well surface region stays below 0 ◦C until around 5 hours after the initial

state when the latent heat is considered. This is also reflected on cryo-suction pressure

changes in Figure 2.8 (b). The displacement and equivalent plastic strain results in Figure

2.8 (c) and (d) further identify the recursive process between the temperature increase

and yield surface change. In other words, the more inelastic behavior around the well

surface is observed in a shorter time when latent heat effect is not considered. However,

the heat transfer delay due to latent heat effect causes less concentration of equivalent

plastic strain by procrastinating the change of yield surface against temperature change.

T=-1.9℃

T=-1.5℃

T=-1.0℃

T=0.0℃

(a) No latent heat effect (b) Considering latent heat effect

Frozen

Frozen

Phase transition

Phase transition

T=-1.9℃

T=-1.5℃

T=-1.0℃

T=0.0℃

Figure 2.7: The effect of considering latent heat in apparent specific heat on thermo-hydro-
mechanical behavior of frozen soil. Temperature and equivalent plastic strain distribution
with fluid flow stream line is compared at the same time (after 2 hours from the initial
state)
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Figure 2.8: The effect of considering latent heat in apparent specific heat on thermo-hydro-
mechanical behavior of frozen soil: displacement vs. time at the well surface, cry-suction,
temperature and equivalent plastic strain vs. time around the injection well (0.03 m away
from the well surface)

2.5.4 Thermal softening by plastic dissipation in 2D biaxial test

In this section, we analyze how the plastic dissipation in frozen soil influences the me-

chanical behavior using numerical experiments. The plastic dissipation can be consid-

ered as heat generation due to frictional movement of soils in the shear band. We set up

the numerical simulation based on 2D biaxial test (Figure 2.9). The top boundary moves

downwards uniformly with the rate of 0.0002 m/sec., while a constant confining pres-

sure of σc = 1, 000 kPa is applied on the right side of the specimen. The bottom of

the specimen is fixed, and the left side is fixed along the lateral direction for shear band
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initiation. The gravity is neglected for this small specimen to simplify the problem. The

specimen is globally undrained and thus no-fluid-flux boundary conditions are prescribed.

All four surfaces are thermally insulated with no-thermal-flux condition. In other words,

no Dirichlet boundary condition is adopted for both liquid water pressure and temper-

ature fields. The mechanical, hydraulic and thermal properties of frozen soil were used

based on the injection well problem (Table. 2.2), but the preconsolidation stress (pc) of

3, 000 kPa was adopted.

𝛿

𝜎#𝑇%

Figure 2.9: The schematic of the 2D biaxial test with the dimensions of 0.1 m × 0.3 m
deforming in plane strain: the vertical displacement (δ) is applied on the top surface of
the specimen, while the bottom of the specimen is fixed; the left side is fixed in the lat-
eral direction; the confining pressure (σc) of 1000 kPa is applied on the right side of the
specimen. The initial temperature (Ti) was set to −1 ◦C

In general, the loading rate needs to be fast enough so that we can see the effect

of heat generation due to mechanical dissipation. Otherwise, the heat generated would

reach the steady state condition before it acts. Figure 2.10 indicates how the shear band

is formed using the equivalent plastic strain (at 80 sec.) and related temperature distribu-

tions to identify the effect of plastic dissipation, which leads to heat generation. We use

the Taylor-Quinney coefficient β to control the plastic dissipation in the energy balance

equation (2.28). When the plastic dissipation is considered (β = 1.0, Figure 2.10 (b)), the

increase of temperature and heat transfer are observed around the shear band, while no
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heat generation occurs when the plastic dissipation is totally ignored (β = 0.0, Figure

2.10 (c)). Considering the freezing characteristic function and mechanical constitutive

model we used in this study, it can be expected that the increase of temperature leads

to shrink the size of the yield surface. Figure 2.11 (a) shows how the local yield surface

changes due to heat generation including the local stress path at two indicated points.

Initially at Point 1, the stress path moves upward vertically (Path 1) due to the location of

element and globally undrained boundary conditions with low permeability of the speci-

men. When the stress path reaches the yield surface, the shrink of yield surface because

of heat generation enforces the stress path to follow the trajectory described in Path 1 of

Figure 2.11 (a). At Point 2, the similar behavior is observed but its stress path changes be-

fore hitting the yield surface (Path 2). Due to the location of the element, the local liquid

water pressure changes in the elastic regime even though the boundary conditions are

globally undrained. We can further analyze the local behavior in Figure 2.11 (b). In the

selected elements, the local deviatoric stress-strain behaviors are observed along with the

volume changes. The thermal softening comes from the change of yield surface due to

temperature increase along the shear band. The deviatoric stress-strain curves on Point

1 and 2 give the similar behavior. However, due to the mean effective stress changes in

Point 2 with Path 2, the volume expansion shows different in Point 2 compared to Point

1. The specific volume changes including temperature changes are depicted in Figure 2.11

(c). Both curves of the specific volume-logarithm of−p′ do not encounter the critical state

line of −1.0◦C which changes with the temperature. The higher increase of temperature

at Point 1 compared to Point 2 is also identified.

We can further evaluate the effect of plastic dissipation in terms of the stress-strain

behavior of frozen soil specimen. The vertical stress and axial strain obtained at the top

of the specimen are presented in Figure 2.12 (a). Here we include additional test results

with slow loading rate of 2.0× 10−7 m/s. When the dissipation effect is ignored (β = 0),

the hardening behavior is captured in the given range of axial strain (< 5%). However,
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(a) Equivalent plastic strain (b) Temperature (β = 1.0) (c) Temperature (β = 0.0)

Figure 2.10: The effect of plastic dissipation in 2D biaxial test: Equivalent plastic strain
forming shear band (a) at 80 seconds and the temperature distribution with different
Taylor-Quinney coefficients ((b) β = 1.0, (c) β = 0.0 – no dissipation) in a deformed
shape (scale=1.0)

the fast loading case (2.0 × 10−4 m/s) with plastic dissipation effects leads to the strain

softening behavior after the axial strain increases more than 3%. Considering the local

element behavior (in Figure 2.12), the thermal softening due to shrink of yield surfaces

with temperature increase is reflected on the specimen behavior. When the slow loading

rate is adopted (2.0 × 10−7 m/s), however, the vertical stress of the specimen follows

the no dissipation case (β = 0) with slight decrease of stress values. In other words,

the decrease of loading rate allows the heat to transfer fast enough which leads to the

minor increase of temperature around the shear band. The increase of temperature with

the slow loading rate was less than 0.05 ◦C. Note that the mechanical constitutive model

is rate independent. However, the proposed framework captures the effect of loading

rate by including the mechanical dissipation as well as coupled governing equations for

thermo-hydro-mechanical interactions. In addition, we present the volume change in

the specimen using the porosity distribution (Figure 2.12 (b)). Note that the porosity

distribution of slow loading rate shows little difference compared to the no dissipation
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case. As can be seen, the strain localization and increase of porosity are concentrated

around the shear band when the loading rate is slow (or when thermal dissipation is

ignored). However, the increase of porosity from other parts as well as shear band in the

specimen are observed when the plastic dissipation is considered. This indicates that the

contribution of heat transfer from the temperature increase along the shear band leads to

thermal softening by affecting the yield surface change.

2.5.5 Coupled THM effects of frozen soil system on shear band

The frozen soil system formulated in this study is not in an isothermal condition and

the phase transition between the liquid water and crystal ice is considered. Thus, solid

response is affected by both thermal and hydraulic couplings. As studied in the previous

researches [19, 20, 81], shear band width is influenced by the thermal diffusivity as well as

diffusivity of the pore fluid. To identify how thermal and hydraulic diffusivities influence

the thermo-hydro-mechanical responses of frozen soil which include phase transition, we

conducted a parametric study by changing the permeability and thermal conductivity.

The numerical experiment is set up based on the 2D biaxial test conducted in the

previous section (Section 2.5.4). Likewise, Figure 2.9 shows the schematics of the test

while the confining stress (σc) of 500 kPa was used. The same rate of moving boundary

condition (0.0002 m/sec) was used on the top of the specimen. Note that the drained

condition was applied on the top and bottom surfaces of the specimen to allow liquid

water flow. Table 2.3 presents a set of intrinsic permeability and thermal conductivity

of frozen soil. First we hold the permeability as the reference value and evaluate the

effect of thermal conductivity by comparing the low and high values. Next we fix the

thermal conductivity with the reference value and analyze shear band with low and high

permeability.

Figure 2.13 demonstrates equivalent plastic strain, temperature distribution and the

pore pressure at 150 sec. after the loading. The equivalent plastic strain results in the
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formation of shear band under the high (left) and low (high) thermal conductivities. The

onset of shear bands locates slightly different in both cases, but the concentration of equiv-

alent plastic strain and shape of shear bands show little difference. The temperature dis-

tribution due to generation of heat by plastic dissipation on shear bands differs, however,

because of thermal conductivity difference. As can be expected, the high thermal con-

ductivity leads heat transfer much faster as in Figure 2.13 (b). The pore pressure increase

shows little difference while the stream line of liquid fluid follows the onset of shear band

(Figure 2.13 (c)). In this numerical experiment, the change of thermal diffusivity may

affect the location of shear band due to heat transfer difference.

Next we fix the thermal conductivity and change the permeability. Figure 2.14 demon-

strates equivalent plastic strain, temperature distribution and the liquid water pressure at

Table 2.3: Mechanical, hydraulic and thermal input parameters for thermo-hydro-
mechanical coupling effects of frozen soil on shear band

Parameter Low Reference High
Thermal conductivity (kW/m/K) 3.0× 10−6 3.0× 10−3 3.0× 100

Intrinsic permeability (m2) 1.0× 10−20 1.0× 10−15 1.0× 10−10
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Figure 2.13: The effect of different thermal conductivities on shear band (equivalent plastic
strain, temperature and pore pressure distributions): the left and right figures in (a), (b)
and (c) present the results under high and low thermal conductivities, respectively

150 sec. after the loading with different permeability conditions. The little difference in

initiation and formation of the shear band is observed. However, a marginally thicker

shear banding and lower concentration of equivalent plastic strain is identified under the

high permeability condition (Figure 2.14 (a)). In addition, slightly faster heat transfer is

captured, which can be considered as convection effect in energy balance equation (Fig-

ure 2.14 (b)). By considering the temperature increase and yield surface change reflected

on the solid constitutive model of this framework, the heat transfer accelerated by con-

vection effects may contribute the size of shear band. The difference in permeability is

identified from the results of pore pressure in Figure 2.14 (c), where the most excess pore

pressure generated by loading is dissipated.
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Figure 2.14: The effect of different permeability on the development shear band (equiva-
lent plastic strain, temperature and pore pressure distributions): the left and right figures
in (a), (b) and (c) present the results under high and low effective permeabilities, respec-
tively

2.6 Conclusions

In this chapter, we present a computational framework that simulates the thermo-hydro-

mechanical responses of freezing and thawing porous media at the finite deformation

range. Our starting point is the mixture and pre-melting theory, which enables one to

derive finite strain constitutive laws for both the path-dependent solid, hydraulic and

thermal constitutive responses. On the theoretical side, we analyze how the degree of

saturation of ice, determined from the unfrozen pore water pressure and temperature,

introduces nonlocality and rate dependence to the non-mechanical hardening/softening

mechanism. Unlike the single-physics solid mechanics problem in which strain and strain
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history alone are sufficient to predict stress, the incorporation of non-mechanical harden-

ing makes the solid skeleton constitutive responses to be highly sensitive to the evolution

of the pore water pressure, temperature and the corresponding gradients. As a result, any

simplification made on the balance principles, such as eliminating the heat generated by

the plastic dissipation in the balance of energy and neglecting the heat convection terms,

may have profound impacts on the quality of predictions on the solid mechanical behavior.

In summary, this work provides a feasible approach to model frozen porous media with

unfrozen water constituents and addresses some key theoretical and computational issues

for capturing the essence of the path-dependent thermo-hydro-mechanical responses of

porous media.
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Chapter 3

Computational plasticity and damage mechanics for

crystalline solids under the nonisothermal condition

This topic is published as: S.H. Na, W.C. Sun, Computational thermomechanics of crys-

talline rock. Part I: a combined multi-phase-field/crystal plasticity approach for sin-

gle crystal simulations, Computer Methods in Applied Mechanics and Engineering, 2018,

doi:10.1016/j.cma.2017.12.022.

3.1 Introduction

Thedemands for safe and permanent disposal of nuclear waste in geologic formations date

back over decades. Natural rock salt, found in domal and bedded formations and the re-

consolidated counterpart formed in a high-pressure and high-temperature environment,

has been used for geological repositories of nuclear waste disposal in the United States and

Germany [82]. Two operating facilities include the Waste Isolation Pilot Plant (WIPP) in

Carlsbad (NewMexico, USA), and the Endlager für radioaktive Abfälle Morsleben (ERAM)

site in Morsleben, Germany [83].

The decision to use salt formation for storage and disposal of radioactive wastes is at-

tributed to its desirable thermo-hydro-mechanical-chemical characteristics, i.e., (1) high

thermal conductivity, (2) low permeability, (3) self-healing mechanism and, (4) biolog-
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ically inactivity of rock salt (as compared with clay). Firstly, the heat generated from

nuclear wastes can be dissipated to the surrounding area much faster in salt than in other

materials since the host salt rock exhibits high thermal conductivity [84]. In addition,

the permeability of rock salt is sufficiently low that it is often idealized as impermeable.

Therefore, it may function as a secured barrier for radioactive wastes [85]. Finally, the

creeping property of salt enables microcracks or damage under mechanical load to be self-

sealed, which may also naturally guarantee the necessary geological barrier function (e.g.

Berlepsch and Haverkamp [83] and Chan, Bodner, and Munson [86]).

Figure 3.1: Disposal operations for Transuranic (TRU) waste at the Waste Isolation Pilot
Plant (WIPP) – reproduced from Hansen and Leigh [87]

Decades of experimental investigations for rock salt provided insight on its mecha-

nisms of brine migration, vapor transport, and related solution-precipitation creeps under

nonisothermal conditions [82, 88–92]. However, the numerical modeling of crystalline

rock salt remains an active research area. Analysis of complex multi-physical responses

of the natural and reconsolidated salt, therefore, is an integral component of the design

of short- and long-term life cycle of a salt repository. In the repository, the facility may

have various phases of operation cycles that involve plugging, sealing, testing, and recon-

solidation of the saline materials [87]. Under such conditions, the reconsolidated salt is
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influenced by moisture content, brine inclusions inside halite crystals, and other materi-

als, such as clay or impurity, that might present in the grain boundary. Within certain

temperature and confining pressure ranges (between 250◦C to 790◦C and between 0.15

MPa and 12 MPa), the responses of salt may become even more complicated due to re-

crystallization and grain boundary migration. This generally leads to precipitation creep-

ing [93]. A number of previous studies, therefore, investigate the phenomenology and

micro-mechanisms associated with the mechanical behavior of salt [94–100]. These stud-

ies have explored the dislocation, dissolution-precipitation creep, healing behavior, and

flow transport properties of natural or reconsolidated salt under a wide range of load and

temperature conditions in a phenomenological setting where microstructural attributes

of the rock salt are not explicitly modeled.

Since salt formations found in nature often contain varying amounts of impurities,

minerals, and brine inclusion, how to capture these spatial heterogeneous effects without

explicitly model its microstructure remains a major challenge. Various phenomenologi-

cal constitutive models have been proposed to capture the macroscopic responses of salt

[86, 98, 101–109]. For instance, Olivella et al. [110] proposed a general formulation for

nonisothermal multiphase flow of gas and brine in saline media, which was further ex-

tended into a series of works for coupled thermo-hydro-mechanical analysis of saline

materials [111–113]. Although they did not explicitly incorporate the grain boundary,

damage and healing, and the microstructural information, the complicated history- and

rate-dependent behaviors of saline media as well as the multiphase interactions among

constituents including gas, liquid, and solid were addressed by linking fluid flow, per-

meability change, thermal gradient, and phenomenological constitutive law for the solid

skeleton.

While these phenomenological approaches inspired by micromechanics of crystals

have achieved a level of success in the past, more physically consistent forward predic-

tion may require stronger physical underpinnings such that the interaction between the
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impurity, the precipitated brine and the anisotropy of crystalline constitutive responses

can be captured properly [87]. Yet, bridging the multiscale coupling effects from the grain

scale to the field applications remains a challenging task due to the complexity of the phys-

ical nature of rock salt. Our ultimate goal is to create a multiscale polycrystalline material

model suitable for field-scale applications. As a first step toward this goal, this article will

focus on modeling the thermo-mechanical response of single-crystal halite.

In this chapter, our objective is to derive, implement, and validate an elastoplastic

model for single-crystal halite subjected to different thermal and mechanical loadings rel-

evant to nuclear disposal applications. We will incorporate other important multiphysics

and multiscale polycrystalline mechanisms such as the interactions across grain bound-

aries, the intra-crystalline and inter-crystalline brine inclusion, and the role of the impu-

rity and additive on the precipitating and pressure solution of the grain boundaries in

future contributions.

We present a unified mathematical framework that enables us to capture the

anisotropic inelastic brittle and ductile behaviors of single-crystal halite. We achieve this

by combining 1) a thermal-sensitive rate-dependent crystal plasticity formulation that

captures the anisotropic plastic deformation caused by the slip of crystallographic planes

and 2) a multi-phase-field regularized fracture model that captures interactions of the

anisotropic intragranular and transgranular fractures of single-crystal halite under the

temperature range relevant to nuclear waste disposal applications (e.g. the WIPP). The

intrinsic anisotropy of halite stemming from the microstructure is incorporated into the

crystal plasticity theory. This theory is a micromechanics-based constitutive law where

the anisotropic plastic flow is associated with activation(s) of the slip systems oriented

according to the lattice structure of the crystalline materials [60, 114–117]. In this work,

we use the strain energy equivalence theory such that the crystal plasticity framework

can be integrated into a phase field model capturing the evolution of damage. Because the

creeping mechanisms, such as grain boundary diffusion, dislocation creep, and thermal
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activated glide, are highly sensitive to temperature, the temperature-dependent energy

dissipation due to creeping is incorporated into the crystal plasticity model [118–123].

The damage and crack growth of single-crystal materials are captured via the phase field

approach, which is a sub-class of the smeared crack approach. This method allows us to

capture complicated crack patterns without introducing an embedded discontinuity [124–

128]. It should be noted that incorporation of the phase field model is not the only feasible

way to model cleavage fractures. Other methods, such as the introduction of pseudo-slip

in crystalline materials, [129, 130] have been used to model the coupled effect of single

crystal plasticity and damage.

We use a sub-class of the phase field model that employs multiple phase fields to

capture damage accumulated in different directions. The multi-phase-field approach has

been very popular to model a wide spectrum of material behaviors including anisotropic

responses of regularized interfaces for planar dislocation [131], re-crystallization [132]

and anisotropic fracture [133–135]. See also Steinbach [136] for a comprehensive review.

In the content of anisotropic phase field models, one obvious advantage of the multi-

phase-field approach is the lack of higher-order terms that are typically required for the

single-phase-field counterpart to capture non-convex anisotropic fracture energies [137,

138]. As a result, the multi-phase-field model does not require specific finite element

spaces spanned by piece-wise smooth and globally C1-continuous basis functions. In-

stead, a simple low-order finite element can be used. This simplicity, although offset by

the additional computational cost due to the additional degrees of freedom, motivates us

to use the multi-phase-field model in this work. The number of independent phase fields

and their directional features are assumed to be consistent with the slip planes of halite.

Finally, the crystal plasticity theory and the multi-phase-field approach are incorporated

into a set of multi-physical field equations. The formulations include the balance of linear

momentum, the micro-force equations for plastic slip and multiple phase-fields, and the

balance of energy.
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The organization of this chapter is as follows. In Section 3.2, we first describe the kine-

matics of a halite grain with multiple slip systems. Then, the application of effective stress

equivalence theory on themulti-phase-fieldmodel is discussedwith respect to anisotropic

fracture for crystalline materials. Within this mathematical framework, the general gov-

erning equations including the balance of linear momentum, microforce equations, and

balance of energy are derived. The specific choice of a free energy function that combines

the crystal plasticity and the multi-phase-field approaches is provided. Subsequently, in

Section 3.3, the stress update algorithm in effective stress space is described followed by

the description of both rate-dependent and rate-independent settings. In Section 3.4, the

finite element formulation, are presented. Numerical simulations are then provided in

Section 3.5, followed by a conclusion.

3.2 Governing equations

In this section, we present the field equations that capture the thermo-mechanical cou-

pling effect of single-crystal halite. We begin by reviewing kinematics of deformation of

a crystalline solid with multiple slip systems. To capture the brittle-ductile transition and

the brittle fractures that might occur under low confining pressure, a multi-phase-field

model is used. Adopting the ideas originated from Nguyen et al. [135], we introduce mul-

tiple phase fields to model anisotropic damage such that each phase field represents the

damage along a particular preferential direction. Finally, the coupled anisotropic damage-

plasticity behavior of single-crystal halite is captured via the effective stress [139, 140].

The total stress in damaged configuration is then recovered based on the effective stress

and the anisotropic gradient damage computed from the phase fields. Meanwhile, the

field theory for balances of linear momentum and energy are discussed.
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3.2.1 Strain energy equivalence for coupling phase field and plasticity

In this work, an anisotropic phase field fracture framework is coupled with a crystal plas-

ticity model to simulate the anisotropic path-dependent behavior of single-crystal halite.

Here we adopt the strain energy equivalence principle used previously in isotropic and

anisotropic damage mechanics [140–142]. This principle hypothesizes that there exists

a fictitious undamaged counterpart of the damaged halite such that a body composed of

the fictitious undamaged material will experience an effective stress σ̂ while the actual

body will experience a stress σ. Furthermore, we assume that despite the damage charac-

terized by the multiple phase fields is anisotropic, the effective stress and the total stress

are co-axial. Consequentially, the degradation function g(d) becomes a scalar function of

the collection of phase fields d. The relationship between the total and effective stresses

when both the fictitious and the real material exhibit the same infinitesimal strain (i.e.,

ϵ = ϵ̂) are,

σ = g(d)σ̂, (3.1)

and the corresponding infinitesimal stress rate is,

σ̇ =
N∑
i=1

∂g(d)

∂di
ḋiσ̂ + g(d) ˙̂σ, (3.2)

where di, (i = 1, 2, ..., N), is the phase field for each preferential direction and N is the

total number of phase fields. An important implication of (3.1) is that while damage and

plastic processes remain coupled, the plasticity model can be associated with the fictitious

undamaged body. Hence one may use a decoupled plasticity algorithm to first obtain the

effective stress from the strain field then update the total stress using the degradation

function from each material point.
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3.2.2 Kinematics for crystal deformation of the damaged halite

For completeness, we briefly review the kinematics of crystal deformation and restrict the

formulation within the infinitesimal range. More comprehensive treatment of this subject

can be found in [61, 119, 121, 143]. Recall that we adopt the approach in Simo and Ju

[142] in which we assume that the actual (damaged) crystal and the fictitious counterpart

undertake the same strain and strain history.

The elastoplastic deformation of a single-crystal grain is attributed to the interactions

between crystal blocks along the predefined crystallographic planes in the slip system. A

slip-system is defined by a combination of crystallographic planes (i.e. slip planes) and

the corresponding sliding directions (i.e. slip directions). The atomic arrangement of the

slip system of crystalline materials leads to a preferential direction of the plastic flow,

hence the overall constitutive responses of a single crystal is anisotropic. In Face Cubic

Centered (FCC) crystals, for example, the slip-systems are defined by the densest packing

planes in terms of atomic arrangement as the slip-plane {111} and slip-direction ⟨110⟩.

This dense packing causes FCC materials, such as aluminum, copper, gold, and silver

to exhibit higher ductility than the Body Cubic Center (BCC) crystals such as, iron and

chromium (although packing alone is not the only factor that influences ductility) [61].

One may view the halite structure as a FCC with secondary atoms in its octahedral holes

(cf. Williams [144]). As a result, a set of the slip-planes is known to be {110} (rather

than {111} for FCC), and the corresponding slip directions are ⟨11̄0⟩. This set of planes

is electrically neutral, and the motion on these planes avoids charged layers gliding over

one another (cf. Hansen [100] and Carter and Norton [145]).

We consider a continuum body (B) with material points identified by the position

vectors x ∈ B. The displacement of a material point with time t can be denoted by

u(x, t), and we define the strain measure (ϵ) as the symmetric part of the displacement

gradient, i.e.,

ϵ := ∇symu =
1

2
(∇u+ (∇u)T). (3.3)
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Figure 3.2: The description of the slip-system of single-crystal halite, (a) an aggregate of
many atoms for the face centered cubic crystal structure (reproduced from Callister Jr
and Rethwisch [146] – adapted from the original Moffat, Pearsall, and Wulff [147], (b) a
unit cell for the sodium chloride (NaCl) crystal structure (reproduced from Callister Jr and
Rethwisch [146]), and (c) the slip-system {110}⟨11̄0⟩

The additive decomposition of the infinitesimal total strain leads to,

ϵ = ϵe + ϵp + ϵθ, (3.4)

where ϵe and ϵp indicate the elastic and plastic components, respectively. Meanwhile, the

thermal component is assumed to be isotropic and defined as a function of the thermal

expansion coefficient, i.e., ϵθ = α(θ− θ0)I , where α is the thermal expansion coefficient;

θ0 is a reference temperature at which the thermal strain ϵθ = 0 (cf. Clayton [130], Al-

dakheel [148], and Miehe et al. [149]). In crystalline materials, the elastic strain describes

distortion of the lattice structure which vanishes when the applied stress is released. On

the other hand, the plastic strain is irreversible and evolves due to the slip on crystallo-

graphic planes. In this work, we assume the thermal expansion as an elastic response and

consider it in the elastic part of free energy functional in (3.41) followed by Anand and

Gurtin [150].
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The α-slip system is composed of: 1) mα, the unit normal to a crystallographic plane,

and 2) sα, the direction of plastic slip on that plane. Therefore, the slip-system α is defined

by orthonormal vectors (mα, sα) based on the crystallographic features of crystals. We

then obtain the plastic strain by summing over all crystallographic slips,

ϵp =
∑
α

γαSα, (3.5)

where γα indicates the plastic slip corresponding to the slip-system α. Sα denotes the

symmetric part of the Schmid tensor (i.e. mα ⊗ sα), which can be expressed as follows,

Sα =
1

2
(mα ⊗ sα + sα ⊗mα) . (3.6)

Note that the summation convention is not employed in respect of indices relating to the

slip systems. Furthermore, the thermal expansion and structural heating are included

by using a thermal-sensitive elastic stored energy function for thermoelastic coupling in

(3.40). For crystals with cubic symmetry crystals, the second-order material tensors such

as thermal expansion and conductivity are all symmetric with one independent compo-

nent [151]. For other types of crystals, the anisotropy of any symmetric second-order

material tensors can be introduced via spectral decomposition. In this case, one may as-

sume that the principal crystallographic directions are parallel to the eigenvectors of the

material tensors (cf. Meissonnier, Busso, and O’Dowd [152]). The thermal effect on the

inelastic behavior of single-crystal halite is incorporated via the temperature-dependent

flow rule for the plastic slips (Section 3.2).

3.2.3 Multi-phase-field approximation for anisotropic fracture

The phase field fracture modeling can be considered as a regularized smeared approach.

In this approach the cracks are not explicitly captured via embedded discontinuities but

approximated by an implicit indicator function obtained from regularizing the strong dis-
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continuities with a characteristic length [153–155]. Here we assume that this characteris-

tic length is sufficiently smaller than the grain size but larger than the finite element mesh

size used for numerical simulations. In those cases, the strongly anisotropic damage and

fracture behaviors can be captured either via a single phase field within a higher-order

Cahn-Hilliard framework [127, 137, 138] or via multiple phase fields, each constrained by

governing equation without the forth-order terms [134, 135]. Due to the simplicity of the

latter approach, we adopt it to capture the damage and fracture behavior in single-crystal

halite.

In a regularized framework where the sharp crack topology is approximated by a diffu-

sive representation, the phase-field variable, d(x, t) ∈ [0, 1], is an implicit function whose

value indicates the location of the smeared crack(s). Let T denote a set of discontinuous

fractures inside a body B. Then the total area of the crack surfaces can be described by

an area integral over T. By introducing a crack density function Γl(d,∇d) the total crack

area can be described by the volume integral as,

Γ =

∫
T

dA ≈
∫
B

Γl(d,∇d) dV where Γl(d,∇d) :=
1

2l
d2 +

l

2
|∇d|2. (3.7)

Here l indicates a length scale that controls the width of the smooth approximation of the

crack. The assigned scalar phase-field values 0 and 1 represent the intact and completely

damaged region, respectively. The phase-field value between 0 < d < 1 indicates a

partially damaged material state at the corresponding material point. The regularized

crack surface can be further extended to the anisotropic case as,

Γl(d,∇d,w) :=
1

2l
d2 +

l

2
ω : (∇d⊗∇d), (3.8)

where ω is a second-order structural tensor, which is invariant with respect to rotations
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for characterizing the material anisotropy [127]. This tensor can be defined as,

ω = I + β(I −m⊗m), (3.9)

where I denotes the second-order identity tensor; m indicates the unit normal vector to

the potentially preferred cleavage plane; β ≫ 1 is the parameter penalizing fracture on

planes not normal to the unit vector m. The isotropic crack surface energy function in

(3.7) can be recovered by setting β = 0.

To capture the anisotropy inherent in the crystalline materials, we associate the ori-

entations of each slip plane as a potential cleavage plane. Adopting the multi-phase-field

technique first introduced by Oshima, Takaki, and Muramatsu [133] and further devel-

oped in [134, 135], we assign multiple phase fields d = {d1, d2, ..., dn} to quantify the

damage accumulation on each slip plane normal to the unit vector mi. Therefore, the

total crack length can be defined by the summation of each anisotropic crack density

function which is rewritten as [134, 135],

Γl(d,∇d,ω) =
∑
i

[
1

2l
(di)

2 +
l

2
ωi : (∇di ⊗∇di)

]
,

where ωi = I + β(I −mi ⊗mi). (3.10)

For convenience we use the underline to denote a set of variables. In analogy to (3.6),

mi corresponds to mα – the unit normal vector of each crystallographic slip plane. The

length scale l and penalizing parameter β are assumed to be the same for each slip system.

These parameters may further differentiate for each slip system based on the microscopic

information of crystalline materials.
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3.2.4 Balance of linear momentum and microforce

In this section, we derive the balance of linear momentum and microforce for single crys-

tals with damage via the principle of virtual power. The virtual-power formulation of the

single crystal using microforce balance is well established and has been described in the

literature [117]. Based on this standard theory, De Lorenzis, McBride, and Reddy [156]

extended the virtual power formulation by introducing an additional microforce balance

associated with a crack phase-field. In this, our new contribution is to extend this work for

the multi-phase-field formulation coupled with crystal plasticity. We postulate the exis-

tence of multiple microforces, each microforce conjugates to a phase field for anisotropic

damage in a single crystal. Furthermore, we extend this framework to incorporate ther-

mal diffusion such that non-isothermal condition can be simulated. For simplicity, we

limit our analysis within the small deformation range and the small temperature differ-

ence assumption [150]. As described in Section 3.2.2, therefore, the thermal expansion

effect is included in the elastic stored energy function (3.40) based on the standard virtual

power formulation [150]. This treatment may be sufficient for a geological disposal under

the limited temperature change condition for low-level radioactive waste materials, for

example, generated by military activities (e.g. the Waste Isolation Pilot Plant, WIPP) [87,

157].

The standard derivation procedure using the principle of virtual power for phase-field

modeling of fracture in a single-crystal are described in great detail in Gurtin, Fried, and

Anand [117] and De Lorenzis, McBride, and Reddy [156]. Here we briefly outline the ex-

pression of virtual power formulations including macroforce (i.e. the total Cauchy stress),

microforce for a single crystal, and additional microforces for multiple phase fields asso-

ciated with the resultant balance equations. In a domain B, the internal power (I) over a

subregion P ⊂ B may take the form of,

I(P) =

∫
P

σ : ϵ̇e dV +
∑
α

∫
P

παγ̇α dV +
∑
i

(∫
P

ξi · ∇ḋi dV +

∫
P

πi ḋi dV

)
, (3.11)
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whereσ indicates the Cauchy stress with the power-conjugate to ϵ̇e; πα denotes themicro-

scopic force associated with the slip rate γ̇α; ξi is the microscopic stress power-conjugate

to ∇ḋi; and πi is the microscopic internal body force (power conjugate to ḋi). Note that

the summation convention is not employed regarding indices related to multiple phase-

fields. Each phase-field variable corresponds to the direction of a crystalline slip system.

As mentioned in Section 3.2.1, σ is a total stress considering damage to the material ob-

tained by (3.1). The calculation of the total stress and a stress update algorithm will be

explained in a later section. Now we assume that the external power (W) acting upon

P ⊂ B has the form as,

W(P) =

∫
∂P

t(n) · u̇ dA+

∫
P

b · u̇ dV +
∑
i

(∫
∂P

χi(n) · ḋi dA+

∫
P

λi ḋi dA

)
, (3.12)

where t is the traction vectorwith outward unit normaln; b is themacroscopic body force;

χi and λi are the microscopic external traction and body force, respectively, both power-

conjugate to ḋi. Note that a scalar external virtual microscopic force power conjugate

to γ̇α is not considered [117]. An additional assumption is made such that each field,

that is u̇, ϵ̇e, γ̇α, and ḋi, is known at some arbitrary known but at fixed time and can be

independently specified within the kinematic constraints, (3.3) to (3.5), as

∇symũ = ϵ̃e +
∑
α

γ̃αSα. (3.13)

By denoting each virtual field by ũ, ϵ̃e, γ̃α, and d̃i, a generalized virtual velocity V can be

defined by [117, 150, 156],

V = (ũ, ϵ̃e, γ̃, d̃ ). (3.14)

Then the principle of virtual power is the requirement that, I(P,V) = W(P,V), that is,

∫
P

σ : ϵ̃e dV +
∑
α

∫
P

παγ̃α dV +
∑
i

(∫
P

ξi · ∇d̃i dV +

∫
P

πi d̃i dV

)
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=

∫
∂P

t(n) · ũ dA+

∫
P

b · ũ dV +
∑
i

(∫
∂P

χi(n) · d̃i dA+

∫
P

λi d̃i dA

)
, (3.15)

for all virtual velocities V. Again, the derivation of balance equations is straightforward

[117, 150, 156], thus resulting in the following final expressions:

∇ · σ + b = 0, (Linear momentum) (3.16)

t(n) = σ · n, (Macroscopic traction) (3.17)

πα = τα with τα = Sα : σ, (Microscopic force balance for each slip system) (3.18)

∇ · ξi − πi + λi = 0, (Microscopic force balance for each phase field) (3.19)

χi(n) = ξi · n. (Phase-field microscopic traction) (3.20)

Here τα indicates the Schmid stress or the resolved shear stress, which represents the

macroscopic stress σ resolved on the slip system α. In addition, the number of (3.19) and

(3.20) is consistent with the number of each phase-field corresponding to the slip system

of single-crystal halite. We further note that the macro and microforces are related based

on (3.18) such that τα represents the force applied on the lattice of a single crystal for

dislocations on the slip system αwhile πα constitutes internal forces on the slip system α

[117]. The multiple phase-field variables, however, do not show clear relations associated

with themacroforce and themicroforce on the slip systems. This interaction is established

based on our choice of a free energy functional, which will be covered in a later section.

3.2.5 Energy balance equation and dissipation inequality

To capture the thermo-mechanical behavior of a single crystal, we present an energy bal-

ance equation which includes contributions of heat conduction, mechanical dissipation,

and structural heating. The first law (energy balance) can be expressed in a local form,

ė = σ : ϵ̇−∇ · q + rθ, (3.21)

69



where e is internal energy per unit volume; q is the heat flux vector; rθ is the heat source

term. This equation can be rewritten in greater detail by including the dissipation of the

plastic slip and the work done by the growth of phase field (3.15). Recall that the rate of

the phase-field change is power conjugate to the microforce [158, 159]. The balance of

energy, therefore, reads,

ė = σ : ϵ̇e +
∑
α

παγ̇α +
∑
i

(
ξi · ∇ḋi + πi ḋi

)
−∇ · q + rθ. (3.22)

Then the second law of thermodynamics (Clausius-Duhem inequality) is,

Dint = η̇ +∇ ·
(q
θ

)
− rθ

θ
≥ 0, (3.23)

in which η is an entropy term, and θ is absolute temperature. Here the the flux vector (q)

can be expressed using Fourier’s law for heat conduction,

q = −κ · ∇θ, (3.24)

where κ is the thermal conductivity tensor. In addition, we may recall the Helmholtz free

energy (ψ) which shows the relation between the internal energy (e) and entropy (η) as,

ψ = e− θη. (3.25)

Therefore, the dissipation inequality (Dint) can be rewritten as,

Dint = σ : ϵ̇e +
∑
α

παγ̇α +
∑
i

(
ξi · ∇ḋi + πi ḋi

)
−
(
ηθ̇ + ψ̇

)
− 1

θ
q · ∇θ ≥ 0. (3.26)
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Now we consider the Helmholtz free energy function for thermo-elasto-plastic crystal

materials of the following form,

ψ = ψ̂(ϵe, s, θ, d,∇d), (3.27)

where ϵe is the elastic strain ; θ the temperature; d a set of crack phase-fields and its

gradient ∇d; s a set of a local scalar measure related to the plastic slip accumulation for

each slip system defined by,

ṡα := γ̇α ≥ 0 where sα(t) =

∫ t

0

γ̇αdτ. (3.28)

The substitution of (3.27) into (3.26) induces the dissipation inequality as the following

form,

(
σ − ∂ψ̂

∂ϵe

)
: ϵ̇e +

∑
α

παγ̇α −
∑
α

∂ψ̂

∂sα
ṡα +

∑
i

(
πi −

∂ψ̂

∂di

)
ḋi

+
∑
i

(
ξi −

∂ψ̂

∂∇di

)
· ∇ḋi −

(
η +

∂ψ̂

∂θ

)
θ̇ − 1

θ
q · ∇θ ≥ 0. (3.29)

Well-known arguments (e.g. Standard Coleman–Noll arguments) lead to the constitutive

relations for the Cauchy stress and entropy, respectively,

σ =
∂ψ̂

∂ϵe
, η = −∂ψ̂

∂θ
. (3.30)

We then further derive the dissipation inequality by following the individual group terms.

The inequality related the each phase-field variable can be expressed as,

∑
i

(
πi −

∂ψ̂

∂d

)
ḋi +

∑
i

(
ξi −

∂ψ̂

∂∇di

)
· ∇ḋi ≥ 0, (3.31)
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which leads to the phase-field microscopic constitutive equations as,

πi =
∂ψ̂

∂di
and ξi =

∂ψ̂

∂∇di
. (3.32)

Substitution of (3.32) into (3.19) with the assumptions of no microscopic body force (λi =

0) leads to the multi-phase-field equations as,

∇ ·

(
∂ψ̂

∂∇di

)
− ∂ψ̂

∂di
= 0. (3.33)

Note that previous phase field fracture models, such as the time-regularized viscous crack

propagation mode in Miehe, Welschinger, and Hofacker [124], often introduce dissipation

function that depends on rate of phase field and that of the phase field gradient. Such an

extension is out of the scope of this study but will be considered in the future. Interested

readers are referred to previous works such as Stainier and Ortiz [52], Miehe, Welschinger,

and Hofacker [124], Mota et al. [160], and Yang, Stainier, and Ortiz [161], for a variational

consistent way to introduce rate-dependence for path-dependent materials. Based on

(3.30) and (3.32), the reduced dissipation inequality becomes,

∑
α

παγ̇α −
∑
α

∂ψ̂

∂sα
ṡα︸ ︷︷ ︸

Dp

−1

θ
q · ∇θ ≥ 0, (3.34)

where Dp denotes the plastic dissipation rate. Considering the definition of gα, the in-

equality (3.34) can be further reduced to,

∑
α

(παγ̇α + gαṡα)− 1

θ
q · ∇θ ≥ 0, where gα = − ∂ψ̂

∂sα
, (3.35)
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in which the thermodynamic force gα power-conjugate to ṡα is introduced. Finally, the

balance of energy is obtained by substituting the free energy (3.25) into (3.22):

ψ̇ + η̇θ + ηθ̇ − σ : ϵ̇e −
∑
α

παγ̇α −
∑
i

(
ξi · ∇ḋi + πi ḋi

)
+∇ · q − rθ = 0. (3.36)

This equation can be rewritten by combining the constitutive relations of (3.30) and (3.32)

as,

−θ∂
2ψ̂

∂θ2
θ̇ =

∑
α

(παγ̇α + gαṡα) +
∑
α

(
θ
∂2ψ̂

∂θ∂sα
ṡα

)
+
∑
i

(
∂2ψ̂

∂θ∂di
ḋi +

∂2ψ̂

∂θ∂∇di
· ∇ḋi

)
θ

+ θ

(
∂2ψ̂

∂θ∂ϵe
: ϵ̇e

)
−∇ · q + rθ. (3.37)

Considering a choice of a free energy function in (3.40), we may reduce the equation as,

−θ∂
2ψ̂

∂θ2︸ ︷︷ ︸
cv

θ̇ =
∑
α

(παγ̇α + gαṡα) + θ

(
∂2ψ̂

∂θ∂ϵe
: ϵ̇e

)
︸ ︷︷ ︸

Dmech−Hθ

−∇ · q + rθ, (3.38)

which can be written in a simplified expression by Simo and Miehe [47],

cvθ̇ = [Dmech −Hθ]−∇ · q + rθ. (3.39)

Here cv is the specific heat per unit volume at constant deformation; Dmech denotes the

contribution to the dissipation due to pure mechanical load and/or thermal flow, which

may be consistent in the form of βσ : ϵ̇p with β the Taylor-Quinney coefficient;Hθ is the

non-dissipative (latent) thermoelastic structural heat or cooling.
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3.2.6 A specific free energy functional

We derive the explicit expressions for the balance equations by choosing the following

stored free energy functional:

ψ = ψ̂e(ϵe, θ, d) + ψ̂p(s, d ; θ) + ψ̂c(d,∇d, ω) + ψ̂θ(θ). (3.40)

The elastic part ψ̂e is composed of the thermoelastic strain energy (we) considering the

thermal expansion [149, 150, 161–164], which is multiplied by the degradation function

g(d) for damage evolution:

ψ̂e = g(d)we(ϵe, θ) with we(ϵe, θ) =
1

2
ϵe : Ce : ϵe − 3αK(θ − θ0) tr ϵe, (3.41)

Firstly, the degradation function g(d) for multiple phase-field can be assumed to have a

simple form [134, 135] as,

g(d) = (1− k)
∏
i

(1− di)2 + k. (3.42)

This function has been chosen such that g′(di = 1) = 0 to guarantee that the strain energy

density function takes a finite value as the domain is locally cracked. The small parameter

k ≪ 1 is introduced for maintaining the well-posedness of the problem for partially

broken part of the domain [134, 135, 165]. Next Ce denotes the fourth-order elasticity

tensor, which may constitute the isotropic or cubic symmetry for crystalline materials. α

is the thermal expansion coefficient for isotropic behavior,K is the bulk modulus, and θ0

denotes a fixed reference temperature. To avoid crack propagation under compression,

the elastic strain can be further decomposed into a positive part we+ and negative part we−

by the spectral decomposition or the volumetric and deviatoric split [135, 149, 166, 167].

ψ̂e = g(d)we+ + we−, (3.43)
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where the description of we+ and we− for crystalline materials will be revisited in the fol-

lowing section.

We then take the contribution of plastic work for crack growth into account to sim-

ulate ductile fracture behavior. The simple equation for the plastic work may have the

form:

ψ̂p = g(d)p⟨wp − wp0⟩, where g(d)p = g(d) and wp = 1

2

∑
α

h(sα)2. (3.44)

In our formulation, the plastic work is temperature-dependence due to the incorporation

of temperature-dependent creep motion (see the viscoplastic flow rule in (3.60)). Never-

theless, we follow the treatment in Simo and Miehe [47] and assume that the free energy

function is temperature-independent for simplicity. As such, the thermoelastic heating

contains no latent plastic terms and is in fact identical to the Gough-Joule effect, as ex-

plained in Simo and Miehe [47]. A more comprehensive treatment that considers the

plastic contribution in thermo-plastic solids can be found in recent work by Aldakheel

[148]. Here the degradation function for plastic work is assumed to be identical to that of

the elastic work, and a plastic work threshold wp0 may be introduced for controlling the

plastic deformation in ductile fracture [149, 167]. The angle bracket operator is defined

as,

⟨x⟩ =


0 if x < 0

x if x ≥ 0

. (3.45)

The plastic work ωp comes from the hardening contribution, which is consistent with the

Taylor hardening in (3.58). Therefore, the thermodynamic force gα power-conjugate to

ṡα in (3.35) can be explicitly described as,

gα = −
∑
α

hsα. (3.46)
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The stored energy function ψ̂c(d,∇d, ω) describes the total anisotropic crack surface

energy. The total crack density formulation is previously defined by (3.10) based on the

diffusive crack topology using the multi-phase-field approximation (Section 3.2.3). By

assuming the same fracture energy for each slip direction (or the same energy release

rate, Gc), the total crack energy function can be expressed as,

ψ̂c = Gc

∑
i

[
1

2l
(di)

2 +
l

2
ωi : (∇di ⊗∇di)

]
. (3.47)

The purely thermal contribution on the stored energy function ψ̂θ constitutes the heat

transfer, in which the equation of ψ̂θ may have a simple form as [149, 161–164, 168, 169],

ψ̂θ = cv [(θ − θ0)− θ log(θ/θ0)] , (3.48)

where cv is the specific heat defined in (3.37). The specific heat is assumed to be a con-

stant for single-crystal halite based on Urquhart and Bauer [84]. In addition, we simplify

the thermal-mechanical-fracture coupling problems by assuming that the stored thermal

energy is not affected by fracture [149].

Finally, the microscopic multiple phase-field evolution equation for each phase of

(3.33) now becomes,

2(1− di)Hi +
Gc

l
di +Gcl∇ · (ωi · ∇di) = 0, (3.49)

where Hi is the strain-history functional that governs the evolution of the irreversible

crack propagation (cf. Nguyen, Réthoré, and Baietto [134] and Nguyen et al. [135]). This

functional may takes the following form,

Hi = max
τ∈[0,t]

{∏
j ̸=i

(1− dj)2
[
we+ + ⟨wp − wp0⟩

]}
. (3.50)
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3.3 Constitutive law

In this section, we present the constitutive law to capture the anisotropic behavior of

crystalline materials. We combine the multi-phase-field method and the single-crystal

plasticity theory to replicate the damage-elasto-plastic behavior via the effective stress

theory [170–173]. The effective stress theory hypothesizes that there exists an effective

stress space where local stresses are redistributed to the effective area such as the un-

damaged skeleton of the body, undamaged material micro-bonds, the vicinity of growing

voids. In addition, we also employ the hypothesis of strain equivalence. This assumption

states that the strain caused by applying the total stress on the actual damaged material is

the same as the strain caused by applying the effective stress on the fictitious undamaged

material. As a result, the local elastoplastic constitutive responses and the evolution of

internal variables can be resolved in a decoupled manner. While this technique is often

employed for coupling damage and plasticity models (e.g. Borst and Verhoosel [140]),

Choo and Sun [174] have used this technique to couple a pressure-dependent plasticity

model and the phase-field fracture framework.

Recalling the specific free energy function, (3.40) and (3.41), with the constitutive re-

lation (3.30) reaches that the Cauchy stress, or total stress, can be resolved as,

σ =
∂ψ̂

∂ϵe
= g(d)σ̂ with σ̂ = Ce : ϵe − 3αK(θ − θ0)I, (3.51)

where σ̂ denotes the effective stress or damage effective stress. It should be noted that

the term effective stress of this study is different from that of porous media, in which

the effective stress indicates the stress of the solid skeleton when saturated or partially

saturated with fluid [19, 20, 28, 43, 175–179]. The stress update algorithm for the multi-

phase-field approach coupled to crystal plasticity is described in Algorithm 1.
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3.3.1 Single crystal elasticity

In this study, the elastic response of single-crystal halite is described by the fourth-order

elasticity tensor Ce as in (3.41) and (3.51). As a crystal structure having cubic symmetry,

single-crystal halite can be represented by three elastic constant, C11,C12, andC44, where

the x, y, and z axes are aligned with the crystallographic axes (e.g. Hirth and Lothe [180]

and Wachtman, Cannon, and Matthewson [181]). Apart from the anisotropic features

originated from the microstructure, the elastic behavior of halite depends on temperature,

pressure, and loading conditions [182, 183]. Therefore, the experimental set-up including

sample preparation process is an integral part to estimate the elastic parameters. There

have been many efforts to measure the elastic constants of natural rock salt. According

to Birch [184], the ultrasonics, one of the dynamical methods, may be the best technique

to estimate the elastic properties of halite including its aggregates. One of the pioneering

works was proposed by Oliver and Pharr [185], in which the load-displacement data from

indentation experiments is used for determining elastic modulus of materials. Here we

assume that the effect of elastic anisotropy is minor compared to the effect of plastic and

damage anisotropy, following the standard assumption in crystal plasticity [186]. A more

accurate model may apply the Zener anisotropy factor (cf. Clayton [151] p. 559) to esti-

mate how severe the assumption of elastic isotropy is for halite. The optimal estimation of

material parameters via inverse problems or optimization procedure, and the calculation

of Zener anisotropy factor for halite are out of the scope but will be considered in future

work. The average bulk modulus (K) and Poisson’s ratio (ν), obtained from single-crystal

data in Carter and Norton [145], are presented in Table 3.1.

The thermoelastic strain energy (we) in (3.41) can be rewritten in terms of volumetric

and deviatoric strain as,

we =
1

2
K(ϵev)

2 + µ (ϵed : ϵ
e
d)− 3αK(θ − θ0)ϵev, with ϵe =

1

3
ϵevI + ϵed, (3.52)
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where K and µ are the elastic bulk and shear moduli, respectively, ϵev = tr ϵe is the vol-

umetric strain, and ϵed is the deviatoric strain tensor. By decomposing the elastic strain

into volumetric and deviatoric contributions, we can further separate the thermoelastic

strain energy as follows to prevent unrealistic crack propagation under compression:


we+ :=

1

2
K⟨ϵev⟩2+ + µ (ϵed : ϵ

e
d)− 3αK(θ − θ0)⟨ϵev⟩+

we− :=
1

2
K⟨ϵev⟩2− − 3αK(θ − θ0)⟨ϵev⟩−

. (3.53)

This additive volumetric-deviatoric split is proposed by Amor, Marigo, and Maurini [187],

while the split of the compressive and tensile components via spectral decomposition can

be found in Miehe, Hofacker, and Welschinger [125].

3.3.2 Single crystal plasticity

This section presents the stress update algorithm for single-crystal plasticity on effective

stress space. The unified fully implicit return algorithm for both rate-independent and

rate-dependent settings are implemented based on Miehe and Schröder [121]. Within

this framework, a multisurface-type model with the elastic domain is used as in Cuitino

and Ortiz [118], and the power low-type viscoplastic slip-rate is introduced for single-

crystal halite. This slip-rate equation takes temperature and rate-dependent effects into

account to describe dislocation creep. For the rate independent limit, the pseudo-inverse

method based on the singular value decomposition (SVD) is used for the inverse of the

Jacobian matrix in the constitutive equations [120, 121].

Followed by (3.3), we first denote by the homogeneous strain rate ϵ̇ in a crystal and

consider its additive decomposition into elastic (ϵ̇e), plastic (ϵ̇p), and thermal (ϵ̇θ) parts,

respectively.

ϵ̇ = ϵ̇e + ϵ̇p + ϵ̇θ. (3.54)

The plastic component coming from the slips on crystallographic planes results in the
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following expression (cf. (3.5)) :

ϵ̇p =
∑
α

γ̇αSα. (3.55)

Again, γ̇α and Sα denote the plastic slip rate and the symmetric part of the Schmid tensor

on α-slip system, respectively.

Now we present the stress update algorithm for a crystal with 2N potentially active

slip systems, J := {1, 2, ..., 2N}. Considering the microforce balance equation (3.18) for

the slip system and crystal plasticity theory [60, 121, 122], the yield condition can be

expressed as a function of the Schmid resolved shear stress (τα) and the critical resolved

shear stress (ταY ) for each slip system. Here we set up the yield condition based on the

effective stress and critical resolved shear stress [139, 188],

fα = τα − ταY , where τα = σ̂ : Sα. (3.56)

Then a non-smooth convex elastic domain in the stress space can be defined as,

E = {(σ̂, ταY ) | fα ≤ 0 for α = 1, 2, ..., 2N} . (3.57)

The evolution of these resistances within a multislip deformation process is governed by

the hardening equations,

τ̇αY = h
2N∑
β=1

γ̇β. (3.58)

The hardening of the yield surface is characterized by the simple Taylor hardening law

that introduces only one additional material parameter, i.e., the plastic modulus (h). Here

we rewrite the plastic strain rate in Koiters’s form for rate-dependent single-crystal plas-

ticity as,

ϵ̇p =
2N∑
α=1

γ̇α
∂fα

∂σ̂
=

2N∑
α=1

γ̇αSα, (3.59)
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where the slip rate γ̇α satisfies a constitutive viscoplastic form under loading conditions

to incorporate plastic flow by the dislocation creep motion in single-crystal halite as (cf.

Hansen [100], Miehe and Schröder [121], and Wawersik and Zeuch [189]):

γ̇α = C0 exp
(
− Q

Rθ

)[(
fα+

ταY
+ 1

)p
− 1

]
. (3.60)

Here C0 represents a fitting parameter; Q is the activation energy; R is the universal

gas constant; θ is the absolute temperature; p is a strain-rate-sensitivity exponent. The

overstress function fα+ is defined by,

fα+ :=

fα if fα > 0

0 otherwise
. (3.61)

The slip rate γ̇α takes the form of (3.60) such that the rate-dependence can be introduced

into the plastic constitutive responses [150]. Note that the dislocation creep equation ob-

tained from the experiments [189] is not originally intended for describing a microscopic

slip-system response. Instead, it was first used to describe the macroscopic response of

a specimen. Nevertheless, we hypothesize that the creeping equation of the slip system

takes a similar form. To minimize the discrepancy between simulated results and exper-

imental data, we calibrate the material parameters by solving the inverse problems [190,

191].

The unified stress update algorithm on effective stress space is outlined for both rate-

independent and rate-dependent crystal plasticity frameworks. Algorithm 1 describes

the elastic predictor phase on effective space, while the plastic corrector and determina-

tion of active slip systems are performed in Algorithm 2. In the rate-dependent case, the

viscoplastic regularization of single-crystal plasticity for halite (3.60) is used. At the rate-

independent limit, the slip rate γ̇α satisfies the classical Kuhn-Tucker conditions [121, 122,
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143, 192]:

γ̇α ≥ 0, fα ≤ 0, γ̇αfα = 0, (3.62)

for all α. Furthermore, the inverse of the Jacobian (D) can be obtained directly if it is non-

singular. If the loading rate is sufficiently low such that the response is approaching the

rate-independent regime, the Jacobian (D) may become singular. In this case, the Moore-

Penrose pseudo-inverse, which can be determined via the singular value decomposition

(SVD), is used to compute the incremental plastic slip [120]. For brevity, we drop the

subscript n+ 1 for variables pertaining to the time tn+1.

Algorithm 1 Elastic predictor phase on effective stress space
1: At integration point compute strain increments ∆ϵ
2: Compute the effective trial stress σ̂tr = σ̂n + Ce : ∆ϵ
3: Assemble trial active set A tr = {α ∈ J | σ̂tr : Sα − ταY,n > 0}
4: if A tr = then

Elastic response: set σ̂ = σ̂tr, ταY = ταY,n, A = ,
C = Ce, and exit

5: else
Plastic response: call Algorithm 2
Update σ̂, ταY , and A
C← Cep, and exit

6: end if
7: Resolve the total stress σ = g(d)σ̂

In Algorithm 1 we assemble the trial active set by checking the yield conditions for

each slip system (3.56) under the given temperature θ. When the trial active set is empty,

the material is in the purely elastic regime. If the trial active set contains any element,

Algorithm 2 is triggered and the Newton iteration for the plastic response is performed. In

this iteration step, the active slip system is successively checked and reassembled followed

by two constraints. Firstly, we check γα in the trial active set whether each parameter

violates the discrete loading conditions, (3.60) and (3.62), in the sense γα ≤ 0. If this is the

case, we drop the slip system from the active set A and restart the local Newton iteration.

Secondly, we check the yield conditions again for the slip systems, not in the current trial

active set. We then reassemble the active set and restart the local Newton iteration by
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Algorithm 2 Plastic integrator and determination of active slip systems
1: Initialize the active set A = An

2: Set initial values for plastic slip iteration: γα = 0 ∀α ∈ J

3: Get the current effective stress: σ̂ = σ̂tr − Ce :
(∑2N

α=1 γ
αSα

)
4: Compute the residuals for active slips systems (α, β ∈A ) and construct the Jacobian

(D)

rα = σ̂ : Sα − ταY p

√
η

∆t
γα + 1

Dαβ = Sα : Ce : Sβ + h
( η

∆t
γα + 1

)1/p
+ ταY δ

αβ η

p∆t

( η

∆t
γα + 1

)1/p−1

with ταY = ταY,n +
∑
α∈A

hγα; η = 1/

[
C0 exp

(
− Q

Rθ

)]
5: if D is singular then

Perform singular value decomposition on D and obtain the Moore-Penrose pseudo
inverse from SVD:

D̄−1 = V�̄−1UT

6: else ComputeD−1 by inversingD, then set D̄−1 = D−1 based on standard inversion
7: end if
8: Update incremental plastic slip: γα ← γα +

∑
α∈A (D̄−1)αβrβ

9: If
(√∑

α∈A [rα]2 > tol
)
go to 3

10: Check the minimum loaded system (I) :
11: if γα ≤ 0 for some α ∈ A then A ← {A \ α∗} and go to 2

where γα∗
= min[γα] ∀α ∈ A

12: else go to 15
13: end if
14: Check the maximum loaded system (II):
15: if fα > 0 for some α ∈ J \A then A ← {A ∪ α∗} and go to 2

where fα∗
= max[fα] ∀α ∈ J \A

16: else Construct the consistent tangent-moduli:

Cep := Ce −
∑
α∈A

∑
β∈A

(D̄−1)αβ(Ce : Sα)⊗ (Sβ : Ce)

17: end if
18: Return to Algorithm 1
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initializing γα = 0 for all α ∈ A . Otherwise, Algorithm 2 is terminated, and the updated

parameters are forwarded to Algorithm 1 for the total stress calculation.

3.4 Variational formulation

This section describes a finite element formulation that combines the multi-phase-field

and the crystal plasticity for modeling thermo-mechanical behaviors of single-crystal

halite. We first derive the variational form of thermo-mechanical problems with mul-

tiple phase fields representing damage along preferential directions. This is followed by

the description of a staggered scheme for solving the equilibrium (momentum and energy

balances) and multiple phase-field equations in Section 5.2.3.

3.4.1 Galerkin form

We consider a domain B with its boundary ∂B composed of Dirichlet boundaries (solid

displacement ∂Bu, temperature ∂Bθ) and von Neumann boundaries (solid traction ∂Bt,

heat flux ∂Bq) satisfying,


∂B = ∂Bu ∪ ∂Bt = ∂Bθ ∪ ∂Bq

∅ = ∂Bu ∩ ∂Bt = ∂Bθ ∩ ∂Bq.

(3.63)

The prescribed boundary conditions (Dirichlet and von Neumann boundary conditions)

read, 

u = u on ∂Bu,

σ · n = t on ∂Bt,

θ = θ on ∂Bθ,

−n · q = q on ∂Bq,

∇d · n = 0 on ∂B,

(3.64)
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where n is outward unit normal on surface ∂B. For model closure, the initial conditions

are imposed as,

u = u0, θ = θ0 at t = t0. (3.65)

In addition, we consider the trial space for the weak form that reads,

Vu =
{
u : B→ R3|u ∈ [H1(B)],u|∂Bu = u

}
, (3.66)

Vθ =
{
θ : B→ R|θ ∈ H1(B), θ|∂Bθ

= θ
}
, (3.67)

Vd =
{
d : B→ R|d ∈ H1(B)

}
, i.e., Vdi =

{
di : B→ R|di ∈ H1(B)

}
.(3.68)

Here H1 denotes the Sobolev space of degree one. The number of di depends on how we

define preferential directions, which is consistent with the slip systems for single-crystal

halite. The corresponding admissible spaces of variations are defined as,

Vη =
{
η : B→ R3|η ∈ [H1(B)],η|∂Bu = 0

}
, (3.69)

Vψ =
{
ψ : B→ R|ψ ∈ H1(B), ψ|∂Bθ

= 0
}
, (3.70)

Vϕ =
{
ϕ : B→ R|ϕ ∈ H1(B)

}
i.e., Vϕi =

{
ϕi : B→ R|ϕi ∈ H1(B)

}
. (3.71)

Therefore, the weighted residual statements of the balance of linear momentum, energy,

and phase-field are: Find u ∈ Vu, θ ∈ Vθ, and d ∈ Vϕ such that all η ∈ Vη , ψ ∈ Vψ, and

ϕ ∈ Vϕ,

G(u, θ, d,η) = H(u, θ, d, ψ) = L(u, θ, d, ϕ) = 0. (3.72)

Consider the governing equations given by (3.16), (3.37), and (3.49). Through the standard

weighted residual procedure, we obtain the variational equations as,

G : Vu × Vθ × Vd × Vη → R,

G(u, θ, d,η) =

∫
B

∇η : σdV −
∫
∂B

η · tdΓ = 0, (3.73)
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H : Vu × Vθ × Vd × Vψ → R,

H(u, θ, d, ψ) =

∫
B

ψcvθ̇dV −
∫
B

ψ

[∑
α

(παγ̇α + gαṡα)

]
dV −

∫
B

ψ (3αKI : ϵ̇e) θdV

+

∫
B

∇ψ · κ∇θdV −
∫
∂B

ψq̄dΓ = 0,

(3.74)

L : Vu × Vθ × Vd × Vϕ → R,

Li(u, θ, di, ϕi) =

∫
B

ϕi [2(1− di)Hi] dV +

∫
B

Gc

l

[
ϕidi + l2∇ϕi · ωi · ∇di

]
dV, (3.75)

where Hi is previously defined by (3.50).

3.4.2 Linearization for the staggered algorithm

Due to nonlinearity and path-dependence nature of the proposed model, linearizing the

system of equations is necessary if an implicit solver is used. In this work, the system of

equations is multi-physical. As a result, this system of equations can be solved either in

a monolithic or operator-split manner [193, 194]. As previously numerical experiments

with single phase-field problems show that the operator splitting approach may poten-

tially be more robust [125, 165], we propose a semi-split iterative strategy that is covered

in the later chapter 5. In this procedure, the multiple phase fields are advanced followed

by the thermo-mechanical solver, which updates the displacement and temperature fields

together. The solution strategies are described in the later chapter.

To obtain the numerical solution of the thermo-mechanical problems iteratively, the

linearization of residuals of the governing equations is required. Due to the usage of the it-

erative sequential solver, the operator-split residual will only update one set of unknowns

within one split iterative step. Hence the linearization is only consistent numerically for

the staggered solver but not for the monolithic counterpart. With this in mind, we first

describe the linearization of the balance of linear momentum with respect to the displace-
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ment and temperature as follows:

δG(u, θ, d,η) =

∫
B

∇η : C : δudV −
∫
B

∇ · η [g(d)3αK] δθdV, (3.76)

in which C = g(d)Cep can be obtained from the constitutive laws based on the effective

stress concept (Algorithms 1 and 2). Likewise, the linearization of energy balance equation

can be derived as follows:

δH(u, θ, d, ψ) =

∫
B

ψcvδθdV −
∫
B

ψδ

[∑
α

(παγ̇α + gαṡα)

]
dV −

∫
B

ψδ (3αKI : ϵ̇e) θdV

−
∫
B

ψ (3αKI : ϵ̇e) δθdV +

∫
B

∇ψ · κδ(∇θ)dV. (3.77)

We note that the plastic dissipation and structure heating terms in the energy balance

equation (3.38) can be considered as a source term due to internal mechanical work. The

consistent linearization of these terms for full implicit calculations requires complicated

computations unless we employ automatic differentiation tools (e.g. Albany [195–197]).

We, therefore, adopt the semi-implicit scheme for the energy balance equations by com-

bining the backward Euler and forward Euler schemes (5.9). This procedure leads to the

following tangent for the energy balance equation,

δH(u, θ, d, ψ) =

∫
B

ψcvδθdV −
∫
B

ψ (3αKI : ϵ̇e) δθdV +

∫
B

∇ψ · κδ(∇θ)dV. (3.78)

For completeness, we include the linearization of the multiple phase-field equations as

follows:

δLi(u, θ, di, ϕi) =

∫
B

−2ϕiHiδdidV +

∫
B

Gc

l

[
ϕiδdi + l2∇ϕi · ωi · δ(∇di)

]
dV. (3.79)

Note again that this equation is for phase-field variable di, and other phase-field variables

exhibit identical expressions.
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3.5 Numerical examples

We present numerical examples to validate and evaluate the applicability of the proposed

combined multi-phase-field crystal plasticity model for single-crystal halite. Firstly, plane

strain (2D) tests are used to investigate influence of different orientations of the slip sys-

tem on anisotropic behavior of halite. In particular, we compare the stress-strain curves,

plastic slips, and crack phase fields obtained from multiple simulations with different

relative angles between the slip-system and the loading direction. Then, we conduct ad-

ditional tests with different mechanical and thermal boundary and initial conditions to

evaluate the thermo-mechanical coupling effects of halite. A two-dimensional tension

test with an existing crack is set up to examine how rate-dependence affects the onset and

propagation of anisotropic fracture. Finally, to provide an insight on how grain boundary

toughness affects the macroscopic mechanical behaviors, we conduct three tensile load-

ing simulations on bicrystals with the same crystal properties but with grain boundary

exhibiting different critical energy release rates.

The material properties, such as stiffness, strength, thermal parameters, activation en-

ergy, of halite depend significantly on the environmental and loading conditions. In an

idealized case in which experimental data are sufficient, a subset of material parameters

can be determined from the first principle, while the rest of the material parameters are

then inferred by solving inverse problems [190, 191, 198]. However, due to the complex-

ity of the inverse problems that involve both crystal plasticity and anisotropic fracture,

such an approach is not used but will consider in the future study. As an alternative,

the material parameters used in this study are obtained from the various sources in the

literature. Firstly, the elastic moduli and fracture energy of single-crystal halite are ob-

tained from the previous study by Tromans and Meech [199]. The length scale l in Table

3.1 is on the order of mesh size and is used as a regularization parameter [135, 187, 200].

Meanwhile, the critical resolved stress, hardening parameter, and creep parameters are

obtained from Wawersik and Zeuch [189] and Wenk et al. [201]. The thermal parame-
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Table 3.1: Material properties of the specimens for the numerical simulations
Parameters Description Value Unit
K Bulk modulus 25.0 GPa
ν Poisson’s ratio 0.25 -
τ Critical resolved shear stress 5.0 ×10−3 GPa
h hardening parameter 1.0 ×10−1 GPa
Gc Fracture energy 1.15 J/m2

l Length scale 1.0 ×10−5 m
β Anisotropy factor 40.0 -
Q Activation energy 14.0 kcal/mol
R Gas constant 1.986 ×10−3 kcal/mol/K
C0 Shape factor 1.0 -
p exponent parameter 10.0 -
α Thermal expansion coefficient 11.0 ×10−6 1/K
cv Specific heat 2.0 ×106 J/m3/K
κ Thermal conductivity 2.0 W/m/K

ters including the specific heat, thermal conductivity, and thermal expansion coefficients

of halite were studied by Urquhart and Bauer [84]. The material properties used in this

study are summarized in Table 3.1. Note that the some of these material parameters,

such as such as thermal conductivity, heat capacity, hardening parameter, and activation

energy are strictly speaking temperature dependence [148]. For instance, experimental

data in Urquhart and Bauer [84], Birch and Clark [202], and Smith [203] have shown that

the thermal conductivity of single-crystal halite may be reduced by half from −75 ◦C to

100 ◦C whereas the the specific heat remains close to 2.0 MJ/m3/K. Nevertheless, these

measurements are highly dependent on the experimental settings and the discrepancies

among different data sets are large compared to the statistical noise. As a result, due to

the fact that the geological disposal for nuclear waste is expected to operate in a higher

temperature range [82], and the lack of sufficient experimental data to incorporating the

temperature dependence of all the aforementioned material parameters, the temperature

dependence of these material parameters are not considered in this work.

The implementation of the numerical model leverages Geocentric, a massively parallel

finite element code for geomechanics, which is built on the open-source finite element
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library deal.II [204, 205] interfaced with the p4est mesh handling library [206], and the

Trilinos project [207]. This code base has been widely used in previous studies including

multiphysics problems [128, 177, 178, 194, 208–210].

3.5.1 Effect of crystal orientations

In this section, numerical examples are presented to investigate the anisotropic mechan-

ical behavior of single-crystal halite when subjected to loadings under different orienta-

tions of the slip system. Figure 3.3 depicts the boundary conditions and the definition of

Euler angles for rotating the slip system. For boundary conditions, the horizontal direc-

tions are constrained on both top and bottom surfaces of the sample. The bottom surface is

further constraint along the vertical direction, and the displacement boundary condition

is applied at the top surface to compress the sample. Note that the influence of confining

pressure is not considered, but its effect considering the grain boundary simulation will

be covered in future study. As can be seen from Figures 3.2 and 3.3, two cleavage planes

(or slip planes) projected onto the 2D plane are used for directional information of multi-

phase-field calculations. To be specific, unless changing orientations of the slip systems,

each cleavage plane aligns to 45◦ and 135◦ directions onto 2D (x-horizontal, y-vertical)

plane, respectively. While such a simplified treatment can be physically reasonable in a

plane strain idealized setting, a more comprehensive modeling effort should consider the

non-coaxial cases. For instance, fracture planes that are more likely to fail, such as {100}

[201], can be associated with one of the phase fields. This improvement will be considered

in future studies. We note that the full set of {110}⟨11̄0⟩ slip systems are considered for

dislocation slip in crystal plasticity calculations, while the two slip planes are assumed to

be aligned with the fracture planes.

For halite or other FCC crystals undergoing plane deformation, it is not essential to

consider the whole set of the slip systems in the crystal plasticity model if the planar

double-slip model is used [60, 211]. This simplified model has been introduced in the
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pioneering study reported in Rashid and Nemat-Nasser [211] where only two “effective”

slip systems whose slip and normal directions lies on the plane of loading. In this work,

we follow the notation in Borja [61], Borja and Wren [119], and Borja and Rahmani [122]

and use two Euler angles (ϕ, ψ) to describe the orientation of the crystal axes relative to

the fixed reference system. We firstly use the default orientation (i.e. the slip orientations

as in Figure 3.2), and then set ϕ to 10◦ and 30◦, respectively, to rotate the slip system on the

x-y plane. Due to the constraint at the top and bottom surfaces, we obtain the localized

plastic and damage zones without adding other conditions (e.g. geometric or material

defects).
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Figure 3.3: Analysis of material anisotropy by changing the orientation of the slip system,
(a) the set-up for plane strain compression test, (b) the definition of Euler angles (ϕ, ψ)
in the three-dimensional plane (reproduced from Borja [61]) including the slip system of
single-crystal halite (see each slip system in Figure 3.2)

Four thousand bilinear quadrilateral finite elements are used to discretize the domain

with the height H = 1.0 mm. The displacement, temperature, and multiple phase fields are

interpolated by the same basis functions. As a result, there are 12,423 displacement de-

gree of freedoms (DOFs), 41,141 temperature DOFs and 8,282 phase-field DOFs (4,141 for

each phase-field) before applying the essential boundary conditions. Under three differ-
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ent orientations, (ψ is fixed at 0 ◦; with ϕ = 0◦, 10◦, and 30◦, respectively), we observe the

significant influence of material anisotropy on the mechanical responses without intro-

ducing any defects or inhomogeneity. The constraint boundary condition with material

anisotropy facilitates the different responses and patterns of plastic and damage behav-

iors. In these simulations, the reference temperature, or the initial temperature condition

is set to 25 ◦C for all three test cases. The top boundary is moving downward during the

simulation with the strain rate of 1.0×10−5/sec.
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Figure 3.4: Stress-strain curve of single-crystal halite with different orientations of the
slip-system (the Euler angle ψ is fixed 0◦ while changing ϕ = 0◦, 10◦, and 30◦, respectively)

To analyze the mechanical responses under plane strain tests, the differential stress

(the difference between the most and least compressive principal stresses) vs. axial strain

curve obtained from specimens of different orientations are presented in Figure 3.4. Al-

though little difference is observed in the stress-strain curves obtained from the ϕ = 0◦ and

ϕ = 10◦ cases, the resultant plastic slip patterns in Figure 3.5 clearly show the anisotropy

of the plastic and damage responses. When Euler angle ϕ is within the range from 0◦

to around 10 ◦, the damage is localized at the boundaries. In the case of ϕ = 30◦, how-

ever, we observe the localized damage zone in the center of the domain, not the edges.

Furthermore, the plastic slip is also concentrated in accordance with the damaged zone.

These patterns are consistent with the stress-strain curve in Figure 3.4, which suggests
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the brittle fracture behavior. The temperature field for the effect of energy dissipation

converging to heat is not presented, which has a minor role to influence the mechanical

behavior of halite.

Phase Field

Plastic Slip

Rotation 𝜑 = 0º Rotation	𝜑 = 10º Rotation 𝜑 = 30º
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Figure 3.5: Phase-field values (top) and plastic slip results patterns (bottom) with different
orientations of the slip-system to investigate the material anisotropy under plane strain
compression test condition. The patterns are captured at the last numerical step of each
case. Euler angle θ = 0◦ is fixed while ϕ varies 0◦, 10◦, and 30◦, respectively

3.5.2 Thermal effect on anisotropic creeping

We conduct the plane strain compression tests with different boundary conditions to ana-

lyze the thermal effect on halite. Firstly we designed the boundary conditions as depicted
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in Figure 3.6. The left boundary is fixed along the horizontal direction, and the bottom

surface is fixed against the vertical direction. Themoving boundary with a constant strain

late (1.0×10−5/sec.) applies the loading on the top surface as in the previous numerical

example. Under the same mechanical loading condition, we set three different initial ref-

erence temperatures on the sample domain: 25 ◦C, 50 ◦C, and 90 ◦C, respectively. In these

cases the same Euler angles ψ = 0◦ and ϕ = 70◦ are used. Under different equilibrium tem-

perature conditions, the mechanical responses including fracture and plastic behavior are

evaluated.
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Figure 3.6: Analysis of temperature effect on mechanical responses, (a) the set-up for
plane strain compression test, (b) stress-strain curves for each temperature condition (θ0
= 25 ◦C, 50 ◦C, and 90 ◦C, respectively)

First of all, we compare the mechanical responses under different temperature condi-

tions using the differential stress and vertical strain curves in Figure 3.6. In these cases

the ductile fracture behaviors are observed while the plastic behaviors differ due to the

difference in initial temperatures. Our crystal plasticity model adopts the creep behavior

of halite that constitutes the temperature, which is essential in analyzing salt problems.

Although the calibration has not been completed for temperature dependence and the

fracture initiated on the sample, the influence of temperature on the mechanical behavior
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of halite is clearly identified. Furthermore, we present the damage and plastic patterns

at the same vertical strain, 0.23 % in Figure 3.7. Followed by the stress-strain curves in

Figure 3.6, the clear fracture initiated from the top left edge is observed when the tempera-

ture is 25 ◦C.The plastic zones including the localized region can be further identified. As

the initial temperature increases, the less damage is observed at the same displacement,

which can be easily expected from the stress-strain curves. Interestingly, the more plastic

slip is concentrated at the right bottom area of the domain as the temperature increases.

This indicates that the temperature may further influence the patterns of plastic zones

under the same mechanical loading condition.

3.5.3 Loading rate effect

In this section, we conduct a simple tensile test on a halite specimen with a pre-existing

crack. By changing the prescribed loading rates, we examine how the loading rate affects

the interplays between the plastic deformation and the crack growth. The size of the

square domain L is 1mm × 1mm, and the initial crack length is 0.5 mm. The bottom

surface of the specimen is constrained along both horizontal and vertical directions while

the top surface is stretched vertically under a constant loading rate in each simulation.

As demonstrated in Figure 3.8 (b), the ductile-brittle transition of halite under different

loading rate is captured. Increasing the loading rate leads to higher peak differential stress

and the material also behaves more ductile in the softening regime. This is consistent

with the behavior of crystalline rock [212]. A closer look at the crack pattern and the

distribution of the plastic strain also reveals that the loading rate affect the macroscopic

responses as well as the anisotropic fracture and plastic deformation.

In particular, when the loading rate is slow (ϵ̇ =1.0× 10−7/sec.), the main crack tends

to follow the cleavage plane directions (see the right figure in Figure 3.9). As the strain

rate is increased to ϵ̇ =1.0× 10−6/sec, (the 10ϵ̇ case in Figure 3.9), a slight zig-zag pattern is

observed. It appears that initially the crack follows the cleave plane but diverts the propa-
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Figure 3.7: Phase-field values (top) and plastic slip results (bottom) patterns with different
initial temperature conditions at the same vertical strain, 0.23 %. The constant displace-
ment loading is applied at the top, and the Euler angles are fixed with ψ = 0◦ and ϕ =
70◦
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Figure 3.8: Analysis of the loading rate effect under two-dimensional tension test, (a) the
set-up for boundary value problem, (b) stress-strain curve with different loading rates
(ϵ̇ = 1.0e−7/sec.). The initial temperature θ0 is set to 25 ◦C, and the Euler angles are set to
ψ = 0◦ and ϕ = 0◦

gation direction due to loading conditions. This crack then follows another cleavage plane

at the left edge of the domain. Finally, when the loading rate further increases (see the left

figure in Figure 3.9), the crack propagation appears to be straight and the damaged zone is

also more diffusive than the low-strain-rate counterpart. This result is perhaps attributed

to the different amount of energy dissipation due to creeping deformation. As the plas-

tic flow of each slip system is highly sensitive to the loading rate (3.60), the changes of

loading rate may affect the magnitude and direction of the overall plastic flow. In the low

strain rate case where the results resemble closely to the rate-independent crystal plastic-

ity, the plastic flow is likely to be dominated by the fewer slip system, which causes plastic

deformation appears to be more anisotropic. This in return changes the distribution of

the driving force for each multiple phase field system in (3.50). As the multiple phase

fields and plastic slip both evolve differently under different loading rates, this leads to

the crack pattern appears to be more anisotropic in the low-strain-rate case.
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Figure 3.9: Phase-field values (top) and plastic slip results (bottom) patterns with different
loading rates are illustrated. The results are captured at the last numerical step of each
simulation with the loading rate ϵ̇ = 1.0e−7/sec

3.5.4 Crack propagation in a bicrystal halite

In this final example, we simulate a tensile test conducted on a bicrystal domain to investi-

gate the interaction between grain and grain boundary. Similar boundary value problems

have been used previously in Oshima, Takaki, and Muramatsu [133] and Nguyen et al.

[135] to model intragrain and grain boundary fractures. In this study, our major point of

departure is 1) the introduction of crystal plasticity model to capture the plastic flow of

the slip system inside the crystal and 2) the modeling of plastic slip of the grain boundary.

To simplify the modeling effort, the grain boundary is approximated using a crystalline

material with a finite thickness that has a single-cleavage plane of which the slip direc-

tion is aligned to the longitudinal direction of the grain boundary. The upshot of this

treatment on grain boundary leads to a much simpler numerical model in which there is
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no need to capture the embedded discontinuities via the cohesive element or enrichment

function. However, as explained previously in Wei and Anand [213], one must be cau-

tious that representing strong discontinuities with regularized interfaces might lead to an

unrealistic large volume of a fraction of grain-boundary regions if the thickness of the

regularized interface is too large. The setup of the boundary value problem is depicted in

Figure 3.10, the grain boundary locates on the diagonal of the domain, which is separated

into two grains having different orientations (30 and 60 degrees). This pre-existing crack

is purposely put inside the gain such that the intragrain crack may propagate toward the

grain boundary.

We adopt the fracture energies reported by Tromans and Meech [199], which esti-

mates ideal fracture energies of both grain and grain boundary of a variety of minerals

including halite. In this chapter, the grain boundary fracture energy was estimated to

86% of the grain fracture energy: 1.155 J/m2 for the grain, and 0.993 J/m2 for the grain

boundary, respectively. We further assume the critical resolved stress τY = 7.5 MPa,

hardening parameter (h = 5 GPa), and activation energy Q = 10.0 kcal/mol/K). To ana-

lyze the relationship between the crack patterns and the grain boundary fracture energy,

we conduct multiple simulations where the fracture energy of the grain boundary is as-

sumed to be 86%, 75%, and 50% of the intra-grain counterpart. Other material properties

of the grain boundary, that may differ from the grain due to diverse reasons, such as im-

purity, solid mass exchange, precipitation creep, etc., are out of the scope in this study

but will be considered in the future. The material parameters used in the simulations can

be found in Table 3.1. We note that the material parameters of halite are highly sensitive

to thermal and mechanical conditions. The well-designed experiments, therefore, need

to be conducted to calibrate the numerical models for particular engineering application

purposes.

The simulated crack patterns of a bicrystal with three different grain-boundary frac-

ture energies (86%, 75%, and 50% of intragrain fracture energy), are shown in Figure 3.11.
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Figure 3.10: The numerical set-up for a bicrystal is depicted to analyze the impact of the
grain boundary fracture energy on crack propagations (reproduced from Oshima, Takaki,
and Muramatsu [133]). The Euler angles ϕ are set to 30◦ and 60◦, respectively to left and
right side grains. The single cleavage plane is assumed to the grain boundary with the
direction of 45◦ along the diagonal. The initial temperature is set to 25 ◦C, and the fracture
energies of the grain boundary are adopted 86%, 75%, and 50% of the grain fracture energy,
respectively

In particular, The damage represented by the combined phase field (the left figures) and

the magnitude of the plastic slip (the right figures) for the cases where the grain-boundary

fracture energy is 86%, 75% and 50% are (a) and (b), (c) and (d), and (e) and (f) accordingly.

In the 86% case, the crack initiates from the pre-existing crack tip and propagates through

the grain boundary until reaching the right end of the domain. In other words, the grain

boundary causes the refraction of the crack, a phenomenon commonly observed in mate-

rials with inter-layer(s) [214].

When the grain-boundary fracture energy is reduced to 70% of the grain fracture en-

ergy, as shown in Figure 3.11(c) and (d), the main fracture behavior is similar to the previ-

ous case before reaching the grain boundary. However, when the crack reaches the grain

boundary, it grows along the grain boundary before the crack refraction occurs. In the

last case where the grain-boundary fracture energy is further reduced to 50% of the grain

fracture energy, the crack simply propagates along the grain boundary once reaching it.
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One interesting implication of this result is that the assumption that cracks only occur

along the grain boundary may only be valid when the interface is sufficiently weak. Oth-

erwise, it is possible that the grain boundary may lead to crack refraction, which may in

return leads to damage and even fragmentation of crystal grains. Although this example

is significantly simplified set-up, this result is an indicator that the intragrain fractures

could be significant in polycrystalline materials in certain circumstance. In those cases,

the phase field approach may provide a convenient mean to capture the interactions of

intragrain and grain-boundary fractures.

0.7 0.8 0.9 1.0

Phase Field Plastic Slip

0.0 1.0E-3 2.0E-3

(a)

(a) (b)

Case 1 with the vertical strain levels of each sequence: 0.069%, 0.072%, and 0.080%

(b)

(c) (d)

Case 2 with the vertical strain levels of each sequence: 0.068%, 0.073%, and 0.080%

(c)

(e) (f)

Case 3 with the vertical strain levels of each sequence: 0.063%, 0.066%, and 0.076%

Figure 3.11: Phase-field values (left) and plastic slip results (right) patterns with different
fracture energies of the grain boundary are illustrated. Case 1 (a) and (b) assumes the
fracture energy of the grain boundary with 86% of grain fracture energy; Case 2 (c) and
(d) with 75%; Case 3 (e) and (f) with 50% of the grain fracture energy, respectively
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3.6 Conclusions

In this work, we developed a framework that combines the multi-phase-field method and

the crystal plasticity theory under non-isothermal conditions for modeling single-crystal

halite. This work is a starting point for modeling coupled thermo-hydro-mechanical be-

havior of polycrystalline rock salt. Under the postulation of microforces associated with

plastic and fracture behaviors, themicrostructure information coming from its slip system

is incorporated into the governing equations. Both rate-dependent and rate-independent

features are captured via the crystal plasticity stress update algorithm. Besides, the multi-

phase-field method presents anisotropic damage of which each directional crack phase-

field is associated with the slip planes. The energy balance equation is further encapsu-

lated into the numerical framework to address the heat conduction, plastic dissipation,

and thermoelastic structural heating. The numerical examples for single crystals demon-

strate that, under the mechanical loading, the proposed numerical framework well cap-

tures the material anisotropy by rotating the slip-system orientations and the variation of

inelastic to fracture behavior under different temperature conditions. Furthermore, the

thermal loading by heat flux in a single crystal exhibits the anisotropic deformation, or

distortion due to temperature increase. The tension test by changing the loading rate indi-

cates the brittle-to-ductile transition along with the change of fracture patterns. Finally,

the numerical example using a bicrystal presents the impact of fracture energy of the

grain boundary on the inter- and intra-granular fracture, in which the grain boundary is

simplified using a single cleavage crystal material. Although this framework for single-

crystal halite is a starting point to be utilized as field scale simulations for polycrystalline

rock salt, the results suggested here clearly indicate that this contribution provides quan-

titatively compatible physical behaviors of halite and potential applicability for practical

engineering applications, e.g., a geologic repository for heating generating nuclear waste.
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Chapter 4

Thermo-hydro-mechanical (THM) coupling effects on the

dynamic wave propagation and strain localization in a

softening porous media

This topic is published as: S.H. Na and W.C. Sun, Wave propagation and strain localiza-

tion in a fully saturated softening porous medium under the non-isothermal conditions, In-

ternational Journal for Numerical and Analytical Methods in Geomechanics, 40(10), 2016,

doi.org/10.1002/nag.2505.

4.1 Introduction

Localization of deformation in solids occurs in many natural processes and engineering

applications. Examples of localization of deformation include the formation of Lüder and

Portevin-Le Chatelier (PLC) bands [215, 216] in metals and alloys, crack bands in concrete

[217], and shear, compaction and dilation bands in sand, clay, ice and rocks [43, 218–222].

For single-phase porous media under the static condition, the onset of strain localization

is related to the loss of ellipticity, while the dynamics counterpart is due to the wave speed

becoming imaginary [223–226]. These cases have been studied via stability and perturba-

tion analyses in Hill [224] and Hill [227], which prove that perturbation grows instead of
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decays in unstable materials due to the ill-posedness of the governing equation. This ill-

posedness of the governing equation, which can be triggered by strain softening and/or

lack of normality [218], can lead to tremendous difficulty to replicate strain localization

in computer simulations. One undesirable consequence is that the numerically simulated

localization zones exhibit pathological dependence on the mesh size [226, 228–233]. As a

result of this inherent mesh dependency, the size of mesh may affect the simulated post-

bifurcation local and global responses, which do not converge upon mesh refinement [19,

234].

To circumvent this mesh dependency, a material length scale must be introduced in

the governing equation. Belytschko et al. [235] summarized a number of ways to intro-

duce length scale and coined them localization limiters. These methods include introduc-

ing nonlocal or gradient based internal variables [216, 236], or higher-order continuum

[237–239], and incorporating rate dependence in constitutive model [226, 240] to regu-

larize the simulated responses after the onset of strain localization. This rate-dependent

localization limiter is relevant to many deformation-diffusion coupling processes in mul-

tiphase materials, as the transient diffusion process is likely to introduce rate dependence

to the mechanical responses due to the coupling effect. The previous works [81, 239, 241,

242] analyze the rate-dependent effect in fluid-infiltrating porous solid via stability and

dispersion analyses, and derive the inherent length scale as a function of permeability

and viscosity of the fluid among other material parameters. Zhang and Schrefler [239],

Benallal and Comi [243], and Abellan and Borst [244] argue that while disperse effects

are indeed observed in two-phase porous media, the physical length scale introduced via

hydro-mechanical coupling effect vanishes at short wavelength limit.

Nevertheless, the aforementioned stability and dispersion analyses are based on the

assumptions that the porous media is under the isothermal condition, and the thermal ef-

fect is negligible and decoupled from the hydro-mechanical processes. These assumptions

are reasonable for numerous engineering applications in which thermal effect plays little
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role on the safety or efficiency of the operations. However, thermo-hydro-mechanical

coupling effect is critical for various applications, such as geothermal energy piles [245],

geological disposal of carbon dioxide and nuclear wastes [246], freezing-thawing of pave-

ment systems [6], and landslide triggered by thermal induced creeping [247].

To the best knowledge of the authors, there is no study concerning the thermo-hydro-

mechanical coupling effect on the inherent length scale of porous media under non-

isothermal condition. The purpose of this article is to fill this important knowledge gap.

In particular, we apply the Routh-Hurwitz stability theorem to the THM governing equa-

tions and determine whether small perturbation can grow into localized instability and

whether dispersive wave can propagate at finite wave speed in a thermal-sensitive soften-

ing porous media under the general non-isothermal condition and at the adiabatic limit.

Our analysis indicates that the characteristic polynomial for the porous media under the

general non-isothermal condition is of the fourth-order in the stability analysis, and of

the sixth-order in the dispersion analysis. According to the Abel-Ruffini theorem (Abel’s

impossibility theorem), a polynomial higher than the fifth-order has no general algebraic

solution. As a result, we prove that it is impossible to express the internal length scale

algebraically for the general non-isothermal case. On the other hand, under the adiabatic

condition, we prove that the characteristic polynomial is reduced to the third-order for the

dispersion analysis. Therefore, we derive the algebraic expression of length scale for this

limit case and compare both new results with the previous works on isothermal porous

media [81, 244, 248].

The rest of this chapter is organized as follows. We first perform the stability analysis

for both general non-isothermal and adiabatic cases, and determine the onset of instabil-

ity in Section 4.2.2. We then investigate the dispersive wave propagation in Section 4.2.3.

In particular, we derive the phase velocity for the non-isothermal case at the long wave-

length limit, and the vanishing of the physical internal length scale is observed at the

short wavelength limit. For many thermo-hydro-mechanical coupling processes at very
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small time scale, the thermal conductivity of the porous media is negligible. For those

adiabatic cases, we derive the simplified expression of the internal length scales and an-

alyze the wave propagation speed during strain softening. In section 4.3, we conduct

numerical experiments using an 1D dynamic THM finite element code to compare and

validate the analytical derivation in Sections 4.2.2 and 4.2.3. Furthermore, the influences

of hydraulic properties (permeability) and thermal parameters (thermal conductivity and

specific heat) on internal length scale and wave propagation behavior are evaluated for

both non-isothermal and adiabatic cases, respectively. Finally, concluding remarks are

given in Section 4.4.

4.2 Stability and dispersion analyses

In this section, the governing equations for the wave propagation of a one-dimensional

softening bar composed of fully saturated porous media under the general non-isothermal

and adiabatic conditions are introduced. We perform stability and dispersion analyses on

both cases and obtain the corresponding characteristic polynomials. Then, we derive the

explicit expression of phase velocity and determine the vanishing length scale under long

and short wavelength limits for the non-isothermal condition. In the adiabatic condition,

analytical derivations of the cutoff wavenumber and internal length scale are investigated

for dynamic wave propagation in a two-phase porous medium. These new results are

compared with the stability and dispersion analyses for isothermal porous media.

4.2.1 Model assumptions and governing equations

The thermo-hydro-mechanical response of fluid infiltrating porous solids is governed by

the balance principles, i.e., the balance of linear momentum, mass and energy. Biot [249]

formulated a general thermodynamics theory for non-isothermal porous media. McTigue

[250] derived a field theory for the linear thermo-elastic response of fully saturated porous
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media. This model is extended in Coussy [175] to incorporate the structural heating effect.

Belotserkovets and Prévost [16] derived analytical solutions of an elastic fluid-saturated

porous sphere subjected to boundary heating, prescribed pore pressure and flux. Selvadu-

rai and Suvorov [251] analyzed the same thermo-hydro-mechanical problem of a spherical

domain. By neglecting the heat generated and dissipated due to deformation of the solid

skeleton and the flow convection of the porous spheres, the analytical solution of THM

responses of the sphere composed of a fluid-saturated elasto-plastic material was derived

and compared with finite element solution.

In this study, we adopt the governing equations of Coussy [175] and Belotserkovets

and Prévost [16]. We assume that the strain is infinitesimal and that there is no mass

exchange between the solid and fluid constituents. The gravitational body force and heat

convection of among the constituents are neglected. Furthermore, we ignored the differ-

ence between the acceleration of the fluid and solid skeleton in (4.1) and (4.2) to simplify

the analysis as previously done in Zienkiewicz et al. [24] and Zhang, Sanavia, and Schre-

fler [81]. As a result, the governing equations of the linear momentum, the fluid mass

balance and the energy balance read,

∇ · (σ′ − bp− βT )− ρü = 0, (4.1)

b∇ · u̇− k∇2p+
1

M
ṗ− 3αmṪ = 0, (4.2)

ρcṪ − κ∇2T + T0β∇ · u̇− 3αmT0ṗ = 0, (4.3)

where σ′ is effective stress (nominal effective stress in Liu et al. [252]), p is pore pressure,

T is temperature, u is displacement of solid skeleton, and b is the Biot’s coefficient. The

mobility, k, is defined as k = ks/µf = kperm/ρfg, in which ks is the intrinsic permeability,

µf is the fluid viscosity, kperm is the permeability or hydraulic conductivity and g is the

gravity acceleration. Furthermore, T0 is the reference temperature as defined in [16]. β

is calculated as β = 3αsK , in which αs is the linear thermal expansion coefficient of
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solid, and K is the bulk modulus. Also, αm is described as, αm = (b − n)αs + bαf ,

including porosity n and the linear thermal expansion coefficient of fluid αf . Here, ρ =

(1 − n)ρs + nρf , in which ρs and ρf are solid and fluid mass densities, κ is the thermal

conductivity, and cs, cf are the specific heats of solid and fluid. The Biot’s modulus is

denoted asM , which is a function of the Biot’s coefficient b, porosity n, the bulk modulus

of the solid grain Ks and that of the fluid constituent Kf , i.e.,

1

M
=
b− n
Ks

+
n

Kf

. (4.4)

In this study, the volume-averaged specific heat of the constituents, ρc = (1 − n)ρscs +

nρfcf , is considered to be specific heat of two-phase fluid-solid mixture. In addition,

we assume that the temperature is at equilibrium locally and hence there is no tempera-

ture difference between the two constituents at the same material point. To simplify the

stability and dispersion analyses, we limit our attention to a one-dimensional dynamic

thermo-hydro-mechanics boundary value problem.

4.2.2 Stability analysis

In this section, we analyze stability of a one-dimensional wave propagation in a thermal-

sensitive fluid-saturated porous media. Our goal here is to determine the necessary

and sufficient conditions to maintain stability of the thermo-hydro-mechanical system

in the generalized non-isothermal case and at the adiabatic limit. Our results are com-

pared with the previous analyses on isothermal porous media. In particular, we apply

the Routh-Hurwitz stability theorem to the characteristic equations of the general non-

isothermal and adiabatic THM systems. The Routh-Hurwitz criterion enables us to de-

termine whether it is possible that the solution of characteristic equation can have a real

and positive part, which in return implies that homogeneous state is unstable and a small

perturbation may grow [216].
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Non-isothermal case

To investigate the stability of an equilibrium state, we apply a harmonic perturbation

with respect to an incremental axial displacement, pore pressure and temperature. For

an infinite one-dimensional thermo-sensitive porous medium initially in a homogeneous

state, the solution of displacement, pore pressure and temperature in space-time (x, t)

may take the following form,


du

dp

dT

 =


Au

Ap

AT

 ei(kwx−ωt) = Aeikwx+λt, λ = −iω, (4.5)

where kw is the wavenumber, ω the angular frequency, and λ eigenvalue. Au, Ap and

AT are the amplitudes of the displacement, pore pressure and temperature perturbations,

respectively. Following the approach in Zhang, Sanavia, and Schrefler [81] and Abellan

and Borst [244], we use an incremental linear constitutive model to relate the infinitesimal

change of the nominal effective stress and that of the total strain for the one-dimensional

THM problem, i.e.,

σ̇′ = Et
∂u̇

∂x
= Etϵ̇, (4.6)

where Et is the tangential stiffness modulus of the solid (cf. Abellan and Borst [244]).

The relations among the one-dimensional total stress σ, Biot’s effective stress σ′′ and the

nominal effective stress σ′ are [252],

σ̇ = σ̇′′ − bṗ = σ̇′ − βṪ − bṗ. (4.7)

The spatial derivative of the incremental nominal effective stress equation (4.6) gives,

∂σ̇′

∂x
= −EtAuk2w exp(ikwx+ λt). (4.8)
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The substitution of (4.5) into (4.1) to (4.3) therefore gives,

−Etk2wAu − i(bkw)Ap − i(βkw)AT − ρλ2Au = 0, (4.9)

i(bkwλ)Au + kk2wAp +M−1λAp − 3αmλAT = 0, (4.10)

ρcλAT + κk2wAT + i(T0βkwλ)Au − 3αmT0λAp = 0. (4.11)

A non-trivial solution to this set of homogeneous equations exists if and only if the fol-

lowing relation holds,

∣∣∣∣∣∣∣∣∣∣
−Etk2w − ρλ2 −i(bkw) −i(βkw)

i(bkwλ) kk2w +M−1λ −3αmλ

i(T0βkwλ) −3αmT0λ ρcλ+ κk2w

∣∣∣∣∣∣∣∣∣∣
= 0, (4.12)

which can be rewritten as shown below,

(−Etk2w − ρλ2)
[
(kk2w +M−1λ)(ρcλ+ κk2w)− (−3αmλ)(−3αmT0λ)

]
+i(bkw)

[
i(bkwλ)(ρcλ+ κk2w)− (−3αmλ)(i(T0βkwλ))

]
−i(βkw)

[
i(bkwλ)(−3αmT0λ)− (kk2w +M−1λ)(i(T0βkwλ))

]
= 0. (4.13)

Expanding (4.13) yields,

− 1

M
ρ2cλ4 + 9α2

mρT0λ
4 − 1

M
ρκk2wλ

3 − ρ2ckk2wλ3

− 1

M
ρcEtk

2
wλ

2 − ρcb2k2wλ2 − ρκkk4wλ2

− 1

M
β2T0k

2
wλ

2 − 6αmβbT0k
2
wλ

2 + 9Etα
2
mT0k

2
wλ

2

− 1

M
Etκk

4
wλ− b2κk4wλ− ρcEtkk4wλ− β2kT0k

4
wλ− Etkκk6w = 0, (4.14)
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After rearranging (4.14), the characteristic equation is a forth-order polynomial that reads,

a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, (4.15)

with the following real coefficients,

a4 = ρ(ρc− 9α2
mT0M), (4.16)

a3 = ρ(κ+ ρckM)k2w, (4.17)

a2 = (ρcEt + ρcb2M + ρκkMk2w + β2T0 + 6αmβbT0M − 9Etα
2
mT0M)k2w, (4.18)

a1 = (Etκ+ b2κM + ρcEtkM + β2kT0M)k4w, (4.19)

a0 = EtkκMk6w. (4.20)

According to the Routh-Hurwitz stability criterion, the stability of the governing equa-

tions is maintained if and only if all the solutions of characteristic polynomial have neg-

ative real part [253, 254]. For the fourth-order polynomial shown in (4.15), the necessary

condition to satisfy the Routh-Hurwitz stability criterion is to have the coefficients listed

in (4.16) to (4.20) hold the following properties,

an > 0, a3a2 > a4a1, and a3a2a1 > a4a
2
1 + a23a0 ,where n = 0, 1, 2, 3, 4. (4.21)

We first examine (4.21)1, which requires all coefficients ai, i = 0, 1, 2, 3, 4, to be strictly

positive. Notice that these coefficients are all the functions of the material parameters

that characterize the mechanical, hydraulic and thermal responses of porous media. As a

result, one may deduce the necessary condition to satisfy (4.21)1 by examining the phys-

ical meaning and the possible ranges of the material parameters. Here we categorize the

material parameters into three groups – strictly positive, non-negative, and real number

(which can be negative, zero or positive). Among these three groups, we first assume that

the total density ρ, specific heat c, Biot’s modulusM and Biot’s coefficient b are all strictly
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Table 4.1: Assumptions on range of the material properties of thermo-sensitive porous
media

Parameter Description Range
ρ Total Density R+

c Specific Heat R+

M Biot’s Modulus R+

b Biot’s Coefficient (0,1]
k Mobility [0,∞)
κ Thermal Conductivity [0,∞)
α Thermal Expansion Coefficient [0,∞)
T0 Reference Temperature [0,∞)
Et Tangential Modulus R

positive and hence greater than zero. Meanwhile, the mobility k, thermal conductivity κ,

thermal expansion coefficient αm and the reference temperature T0 are assumed to be

non-negative (if the temperature unit is Kelvin). Finally, the tangential stiffness Et can

be both positive, negative or zero, as summarized in Table 4.1.

With the aforementioned assumptions in mind, we notice that a0, a1 and a3 may all

become non-positive when both thermal conductivity and permeability of the material

become zero. This result indicates that the wave propagating in non-isothermal porous

mediummay lose stability at the undrained limit even though there is no softening. At the

adiabatic limit, we found that one of the roots of the characteristic polynomial is zero and

at least one of the root may have a positive real part if at least one of the four conditions

listed at the end of section 4.2.2 is met. On the other hand, a4 is greater than zero if both

solid and fluid constituents do not exhibit thermal expansion such that αm = 0. However,

to maintain stability, the specific heat must be large enough such that c > 9α2
mT0M/ρ. In

other words, from a theoretical standpoint, it is possible for the THM governing equations

to lose stability if the fluid and solid constituents are both nearly incompressible but the

porous medium is vulnerable to significant thermal expansion (e.g. marine clay). This

indicates that material softening is not the only indicator that detects the loss of stability

in the THMproblem. Furthermore, a necessary and sufficient condition for a0 > 0, a1 > 0
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and a2 > 0 is to have Et > 0, i.e., no softening occurring. A few algebraic operations

reveal that,

a2 > 0 implies that Et >
−ρcb2M − ρκkMk2w − β2T0 − 6αmβbT0M

ρc− 9α2
mT0M

, (4.22)

a1 > 0 implies that Et >
−b2κM − β2kT0M

κ+ ρckM
. (4.23)

Since the stability condition also requires a4 > 0 and hence ρc − 9α2
mT0M > 0, both

(4.22) and (4.23) would not be violated unless softening occurs (i.e. Et < 0). Meanwhile,

the explicit expression of a3a2 > a4a1 reads,

kκ2Mρ2k6w + b2c2kM2ρ3k4w + ck2κM2ρ3k6w + β2κρT0k
4
w + 6αmbβκMρT0k

4
w

+9α2
mb

2κM2ρT0k
4
w + 6αmbβckM

2ρ2T0k
4
w + 9α2

mβ
2kM2ρT 2

0 k
4
w > 0,

(4.24)

which can be expressed as below,

ρk4w
[
ρ2ck2κM2k2w + κT0(β + 3bαmM)2 + kM(ρκ2k2w +M(bρc+ 3βαmT0)

2)
]
> 0.

(4.25)

Condition (4.25) always holds if the wavenumber is real, either the permeability or the

thermal conductivity is non-zero and the rest of the material parameters are strictly posi-

tive. Finally, a3a2a1 > a4a
2
1 + a23a0 can be expanded as,

b2kκ3M2ρ2k10w + b2c2EtkκM
2ρ3k8w + b4c2kκM3ρ3k8w + b2ck2κ2M3ρ3k10w

+ b2c3Etk
2M3ρ4k8w + β2Etκ

2T0ρk
8
w + b2β2κ2MT0ρk

8
w + 6αmbβEtκ

2MT0ρk
8
w

+ 6αmb
3βκ2M2T0ρk

8
w + 9α2

mb
2Etκ

2M2T0ρk
8
w + 9α2

mb
4κ2M3T0ρk

8
w + β2cEtkκMT0ρ

2k8w

+ 12αmbβcEtkM
2T0κρ

2k8w + β2k2κ2M2T0ρ
2k10w + 6αmb

3βckκM3T0ρ
2k8w

+ 9α2
mb

2cEtkκM
3T0ρ

2k8w + b2β2c2k2M3T0ρ
3k8w + 6αmbβc

2Etk
2M3T0ρ

3k8w
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+ β2ck3κM3T0ρ
3k10w + β4kκMT 2

0 ρk
8
w + 6αmbβ

3kκM2T 2
0 ρk

8
w

+ 9α2
mβ

2EtkκM
2T 2

0 ρk
8
w + 18α2

mb
2β2kκM3T 2

0 ρk
8
w + 6αmbβ

3ck2M3T 2
0 ρ

2k8w

+ 9α2
mβ

2cEtk
2M3T 2

0 ρ
2k8w + 9α2

mβ
4k2M3T 3

0 ρk
8
w > 0, (4.26)

which can be further simplified as,

Etρk
8
w(κ+ ρckM)

[
6αmbβMT0(κ+ ρckM) + b2M2(ρ2c2k + 9α2

mκT0)

+β2T0(κ+ 9α2
mkM

2T0)
]
+ ρk8wM(b2κ+ β2kT0)

[
ρ2ck2κM2k2w + κT0(β + 3αmbM)2

+kM(κ2ρk2w +M(ρcb+ 3αmβT0)
2)
]
> 0.

(4.27)

In other words, a3a2a1 > a4a
2
1 + a23a0 implies that,

Et >

−M(b2κ+ β2kT0) [ρ
2ck2κM2k2w

+κT0(β + 3αmbM)2 + kM(κ2ρk2w +M(ρcb+ 3αmβT0)
2)]

(κ+ ρckM) [6αmbβMT0(κ+ ρckM)
+b2M2(ρ2c2k + 9α2

mκT0) + β2T0(κ+ 9α2
mkM

2T0)]

, (4.28)

which would not be violated unless softening occurs (i.e. Et < 0) as the above (4.22) and

(4.23).

As a result, the THM governing equations may fail the Routh-Hurwitz criterion if at

least one of the following situations happens:

1. Softening occurs such that Et < 0.

2. Both permeability and thermal conductivity of the porous media become zero.

3. Specific heat c ≤ 9α2
mT0M/ρ.

Adiabatic case

The stability analysis conducted in the previous section can be significantly simplified

by assuming that the entire one-dimensional bar is in the adiabatic or isothermal condi-
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tion. While the latter case has been extensively studied in the past [81, 239, 244, 248],

the stability analysis of adiabatic porous media has not yet been established. For many

engineering applications in which high-rate and shock responses are of interest, it is rea-

sonable to assume that the thermal conductivity is negligible. In those cases, we may

derive the characteristic equation for the adiabatic condition by assuming the thermal

conductivity to be zero, κ ≈ 0. As a result, the characteristic equation of the adiabatic

THM system reads,

∣∣∣∣∣∣∣∣∣∣
−Etk2w − ρλ2 −i(bkw) −i(βkw)

i(bkwλ) kk2w +M−1λ −3αmλ

i(T0βkwλ) −3αmT0λ ρcλ

∣∣∣∣∣∣∣∣∣∣
= 0, (4.29)

which can be rewritten as shown below,

(−Etk2w − ρλ2)
[
(kk2w +M−1λ)ρcλ− (−3αmλ)(−3αmT0λ)

]
+i(bkw) [i(bkwλ)ρcλ− (−3αmλ)(i(T0βkwλ))]

−i(βkw)
[
i(bkwλ)(−3αmT0λ)− (kk2w +M−1λ)(i(T0βkwλ))

]
= 0. (4.30)

Expanding (4.30) yields,

− 1

M
ρ2cλ4 + 9ρα2

mT0λ
4 − ρ2ckk2wλ3

− 1

M
ρcEtk

2
wλ

2 − ρcb2k2wλ2 −
1

M
β2T0k

2
wλ

2 − 6αmβbT0k
2
wλ

2 + 9Etα
2
mT0k

2
wλ

2

−ρcEtkk4wλ− β2kT0k
4
wλ = 0,

(4.31)

which can be rewritten as,

− 1

M
λ
[
ρ(ρc− 9α2

mT0M)λ3 + ρ2ckMk2wλ
2
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+(ρcEt + ρcb2M + β2T0 + 6αmβbT0M − 9Etα
2
mT0M)k2wλ

+(ρcEt + β2T0)kMk4w
]
= 0. (4.32)

This equation can be expressed into a more compacted form that reads (M ̸= 0),

b3λ
4 + b2λ

3 + b1λ
2 + b0λ = 0 or (b3λ

3 + b2λ
2 + b1λ+ b0)λ = 0, (4.33)

where the expressions of the coefficients are,

b3 = ρ(ρc− 9α2
mT0M), (4.34)

b2 = ρ2ckMk2w, (4.35)

b1 = (ρcEt + ρcb2M + β2T0 + 6αmβbT0M − 9α2
mEtT0M)k2w, (4.36)

b0 = (ρcEt + β2T0)kMk4w. (4.37)

At the adiabatic limit, the vanishing of the Laplacian term in the balance of energy equa-

tion leads to a fourth-order characteristic polynomial (4.33) of which one of the roots is

obviously zero (λ = 0). This root represents a neutrally stable condition in which per-

turbation neither grows (which requires a positive real part) or decay (which requires a

negative real part) [216]. To determine whether perturbation may grow, we examine the

rest of the roots corresponding to (4.33) and analyze the ranges of material parameters

that lead to at least one root having a positive real part (and hence causes a perturbation

to grow). Note that the coefficients bi, i = 0, 1, 2, 3 in (4.33) are either functions of an ex-

ponentiation of the wavenumber of a particular order, i.e., k2w, k4w, or independent of kw.

Furthermore, each coefficient does not depend on the exponentiation of the wavenumber

with multiple orders as a2 in (4.18). This feature allows one to derive the cutoff wavenum-

ber, which provides the range of wavenumbers where wave propagation is possible in the

adiabatic porous media.
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Now apply the Routh-Hurwitz stability criterion to the polynomial corresponding to

the non-zero roots, i.e., b3λ3+ b2λ2+ b1λ+ b0 = 0. The necessary condition to satisfy the

Routh-Hurwitz stability criterion reads,

bn > 0 and b2b1 > b3b0 ,where n = 0, 1, 2, 3, (4.38)

where b2b1 − b3b0 > 0 can be written as,

ρkM2 (ρcb+ 3αmβT0)
2 k4w > 0. (4.39)

This condition holds when the mobility k is positive. In analogy to the general non-

isothermal case, we can identify the necessary condition that leads to instability. The

loss of stability may appear if one of the following criteria is met:

1. Mobility k = 0, in which case b0 and b2 are both equal to 0.

2. Tangential modulus Et ≤ −(β2T0/ρc) leads to b0 ≤ 0.

3. Tangential modulus Et ≤ −(ρcb2M + β2T0 + 6αmβbT0M)/(ρc− 9α2
mT0M) leads

to b1 ≤ 0.

4. Specific heat c ≤ 9α2
mT0M/ρ so that b3 ≤ 0.

Remark 1

Notice that in many THM formulations, such as Selvadurai and Suvorov [251] and Sel-

vadurai and Suvorov [255], the work done or energy dissipation of the fluid and solid

constituents are assumed to be negligible in the balance of energy equation. In this case,

the energy balance equation (4.3) may be simplified as,

Ṫ − κ

ρc

∂2T

∂x2
= 0. (4.40)
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Hence, the mechanical and hydraulic responses are only one-way coupled with the heat

transfer process. While the temperature changes may still cause deformation and/or flow,

(4.40) indicates that neither deformation of the solid skeleton or the pore-fluid flow may

impose any influence on the temperature due to the simplified assumptions. In this special

case, the characteristic equation reads,

∣∣∣∣∣∣∣∣∣∣
−Etk2w − ρλ2 −i(bkw) −i(βkw)

i(bkwλ) kk2w +M−1λ −3αmλ

0 0 ρcλ+ κk2w

∣∣∣∣∣∣∣∣∣∣
= 0. (4.41)

In the one-way coupling THM formulations, the characteristic equation will have two

roots identical with those in the fully saturated isothermal condition [81, 244, 248], while

the additional root is λ = −κk2w/(ρc) which is either equal to zero (when κ = 0) or

negative (when κ is positive). In other words, if the thermal conductivity is non-zero,

then the governing equations of the one-way coupling THM system and the isothermal

THM system share the same necessary and sufficient conditions for stability.

4.2.3 Dispersion analysis

Even if stability is lost, numerical simulations may still continue and give meaningful

results as pointed out by Abellan and Borst [244]. However, when the THM problem

becomes ill-posed, the physical length scale inferred from the physical properties vanishes

and a numerical length scale, which is often the mesh size, may influence the numerical

solutions and cause mesh dependency.

The dispersion analysis provides a tool to predict the vanishing of finite non-zero

physical wavelength by checking whether the associated cutoff wavenumber or damping

factor can be identified. Recall that a wave is considered dispersive if the phase velocity

(or wave velocity, vp) depends on the wavenumber [81, 239, 243, 244, 248, 256–259]. In this

case, the waves of different wavelengths travel at different phase velocities and hence the
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shape of a dispersive wave may change as it propagates [260]. To capture localization of

deformation properly, governing equationmust be able to change the shape of an arbitrary

loading wave into a stationary wave in a localization zone [231, 244]. It is well known

that wave propagation in the standard single-phase continuum upon the occurrence of

strain softening is not dispersive, and hence the mesh dependency is observed [216, 244].

In this section, our objectives are to (1) investigate whether a dispersive wave can

propagate at the long and short wavelength limits in the non-isothermal case, and (2)

examine the cutoff wavenumber and internal length scale when strain softening at the

adiabatic limit.

Non-isothermal case

We assume that the solution of the governing equations of a damped, harmonic wave prop-

agating in a thermo-sensitive fully saturated two-phase porous media takes the following

form: 
du

dp

dT

 =


Au

Ap

AT

 ei(kwx−ωt) = Aeλrt+i(kwx−ωt), (4.42)

where Au, Ap and AT are the amplitudes of the displacement, pore pressure and temper-

ature accordingly. In the dispersion analysis, we split the possible complex eigenvalue

into real part (λr) and imaginary party (ω or λi) as λ = λr − iω. According to Zhang,

Sanavia, and Schrefler [81] and the dispersion analysis of adiabatic case below, the cut-

off wavenumber can be derived using the discriminant of cubic polynomial of eigenvalue

when the same order of wavenumber term exists in each coefficient of the characteristic

equation (e.g. (4.33)). However, in the characteristic equation of non-isothermal condi-

tion (4.15), the coefficient a2 has two different orders of wavenumber (k2w and k4w) and the

derivation of discriminant of quartic polynomial cannot give the explicit expression of

wavenumber having the complex conjugate roots. Nevertheless, we may still determine
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the relation between the phase velocity and the real and imaginary parts of the eigenvalue

by substituting λ = λr − iω into (4.15). This process, based on Abellan and Borst [244],

decomposes the characteristic equation into real and imaginary parts as follows,

a4λ
4
r + a3λ

3
r + a2λ

2
r + a1λr + a0 − a2ω2 − 3a3λrω

2 − 6a4λ
2
rω

2 + a4ω
4

+i(−a1ω − 2a2λrω − 3a3λ
2
rω − 4a4λ

3
rω + a3ω

3 + 4a4λrω
3) = 0. (4.43)

The imaginary part of (4.43) vanishes if the following condition holds,

ω = 0 or ω2 =
4a4λ

3
r + 3a3λ

2
r + 2a2λr+a1

4a4λr + a3
. (4.44)

For the dispersion analysis of dynamic governing equations, we can assume ω ̸= 0 and

take the condition of (4.44)2. By considering the coefficients ai, i = 0, 1, 2, 3, 4 of (4.16)

to (4.20), we know that ω is expressed in terms of wavenumber (kw), and the relation of

phase velocity (vp = ω/kw) and wavenumber can be derived. Since the phase velocity is

dependent on the wavenumber, we can find out that the wave propagation is dispersive.

Furthermore, by substituting (4.44)2 into (4.43), the equation of real part of eigenvalue λr

can be expressed as shown below,

[
64a34λ

6
r + 96a3a

2
4λ

5
r + (48a23a4 + 32a2a

2
4)λ

4
r + (8a33 + 32a2a3a4)λ

3
r

+(8a2a
2
3 + 4a22a4 + 4a1a3a4 − 16a0a

2
4)λ

2
r + (2a22a3 + 2a1a

2
3 − 8a0a3a4)λr

+a1a2a3 − a0a23 − a21a4
]
/(16a24λ

2
r + 8a4a3λr + a23) = 0. (4.45)

Unfortunately, as proven by the Abel-Ruffini theorem (also referred as the Abel’s im-

possibility theorem [261]), there exists no general algebraic solution in radicals to poly-

nomials of degree five or higher with arbitrary coefficients. In other words, there is no

general formula that allows the real part of eigenvalue λr to be expressed algebraically,

even though it is still possible to solve (4.45) numerically. However, we can estimate λr
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by taking long and short wavelength limits considering the coefficients ai, i = 0, 1, 2, 3, 4

and (4.44) to (4.45).

Firstly, we found that taking the long wavelength limit, i.e. kw → 0, yields the eigen-

value λr → 0 in (4.45). As demonstrated in Abellan and Borst [244], this result leads to

the relation of phase velocity and wavenumber according to (4.44)2. Therefore, we can

explicitly derive the phase velocity for the long wavelength limit as shown below.

vp =

√
Etκ+ b2κM + ρcEtkM + β2kT0M

ρ(κ+ ρckM)
=

√
Et
ρ

+
b2κM

ρ(κ+ ρckM)
+

β2T0kM

ρ(κ+ ρckM)
.

(4.46)

We can further observe that the phase velocity o f (4.46) is reduced to the classical bar ve-

locity, vp =
√
Et/ρ, when thermal effects are ignored and the fluid is removed (or simply,

when κ and k are ignored). Figure 4.1 shows how the phase velocity changes depending

on the thermal conductivity and permeability (or mobility k), where the material prop-

erties are selected from the previous studies [19, 81]. When the thermal conductivity is

given, for example κ = 2.5× 10−3kW/m/◦C, the phase velocity does not change until the

permeability decreases below kperm ≈ 1.0× 10−6 m/s. Besides, when the permeability is

further decreased and beyond the range, 1.0×10−8 < kperm < 1.0×10−6 (m/s), additional

response from the phase velocity is not observed. In other words, the phase velocity of

the THM system can be influenced by how the permeability and thermal conductivity are

combined, but the effect is limited.

For the short wavelength limit, i.e. kw → ∞, we can estimate that λr ∼ k10w from

(4.45) and the wave velocity becomes proportional to the wavenumber, vp ∼ kw, from

(4.44). By adopting the relation of the internal length scale and damping coefficient from

a single-phase rate-dependent medium [260], the internal length scale (l) is defined as

follows:

l = lim
kw→∞

(
−vp
λr

)
∼ lim

kw→∞
k−9
w = 0. (4.47)

This means that the internal length scale vanishes at the short wavelength limit. The loss
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Figure 4.1: Phase velocity vs. permeability with different thermal conductivities (With
Et = 30 MPa, ρc = 4.5 kJ/m3/◦C, M = 200 MPa and T0 = 20 ◦C)

of physical internal length scale also suggests that any grid-based numerical model that

solves the THM governing equations may exhibit mesh dependency, as any regulariza-

tion effect induced by multi-physical coupling may vanish if the physical length scale

vanished.

In other words, the rate-dependence introduced through multiphysical coupling may

not regularize the THM governing equations when softening occurs. This conclusion

echoes the previous dispersion analysis of isothermal two-phase porous media by Abel-

lan and Borst [244], which also indicates that the internal length scale vanishes at the

short wavelength limit. The wave propagation behavior of non-isothermal condition

when strain softening occurs is further evaluated by numerical experiments in Section

4.3.2.

For the adiabatic case, we derived the internal length scale of the adiabatic THM sys-

tem within a limited range of wavenumbers by expanding the derivation for isothermal

porous system in Zhang, Sanavia, and Schrefler [81]. In addition, we conducted para-

metric studies to analyze how the specific heat and permeability may affect the cutoff

wavenumber and the corresponding internal length scale.
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Adiabatic Case

By assuming that the thermal conductivity is approximately zero, we obtained the charac-

teristic equation of a damped harmonic wave propagating in a porous medium at the adi-

abatic limit. Based on the derivations in Section 4.2.2, we conducted a dispersion analysis

and derive the expression of the internal length scale when the porous medium remains at

the adiabatic limit. Our starting point is the third-order characteristic polynomial, which

takes the following form,

D(λ) = λ3 + aλ2 + bλ+ c = 0, (4.48)

where,

a = a0y, a0 =
ρckM

ρc− 9α2
mT0M

, (4.49)

b = b0y, b0 =
ρcEt + ρcb2M + β2T0 + 6αmβbT0M − 9α2

mEtT0M

ρ(ρc− 9α2
mT0M)

, (4.50)

c = c0y2, c0 =
(ρcEt + β2T0)kM

ρ(ρc− 9α2
mT0M)

, (4.51)

y = k2w. (4.52)

When strain softening occurs, the tangential modulus Et becomes negative. In this case,

waves propagating in the porous medium can be either dispersive or non-dispersive, de-

pending on the wavenumber kw.

Our objective here is to determine whether it is possible to propagate waves with

finite speed when stability of the THM system has already been lost. Recall that the

stability analysis in Section 4.2.2 indicates loss of stabilitywhen either one of the following

conditions holds , i.e., (1) Et < −(β2T0/ρc), (2) c > 9α2
mT0M/ρ, (3) k = κ = 0. Here,

we assume that the permeability is non-zero and focus our attention only on the cases in

which condition (1) and (2) hold. Furthermore, we assume that the softening tangential
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modulusEt > −b2M always holds [81, 227]. In other words, our objective is to determine

whether the roots of the characteristic polynomial contain positive real part for the special

case where the following condition holds,

−b2M < Et < −β2T0/ρc , c > 9α2
mT0M/ρ , k > 0. (4.53)

Given the condition expressed above, we conclude that at least one of the roots has a

positive real part. This is due to the fact thatEt < −β2T0/ρc implies that ρcEt+β2T0 < 0,

which in return leads to D(0) < 0. Meanwhile, limx→∞D(x) > 0, as the characteristic

polynomial of (4.48) is monic. According to the intermediate value theorem (or more

specifically Bolzano’s theorem, cf. Morales [262]), the two aforementioned conditions

combining the fact that the polynomial with real coefficients is continuous imply that

(4.48) has at least one root with positive real part. Thus, there are two possible sets of

solutions ofD(λ): (1) one positive real root and a pair of complex conjugate roots, (2) three

real roots in which at least one is positive. As discussed in Zhang, Sanavia, and Schrefler

[81], the first case enables waves to propagate by remaining the governing equations to

be hyperbolic under strain softening condition. In the second case, however, the wave

speed becomes imaginary which leads the dynamic governing equations to be elliptic:

the finite element analysis will show mesh dependency [81]. Therefore, we evaluate the

cubic polynomial of (4.48) to have one real root and a pair of complex conjugate roots by

considering that the discriminant (denoted as,△) should be less than zero. According to

(4.48) to (4.52), the discriminant of cubic function can be expressed as,

△ = −4b03y3 + a0
2
b0

2
y4 + 18a0b0c0y4 − 27c0

2
y4 − 4a0

3
c0y5. (4.54)

This expression can be rewritten in terms of coefficients, w, r and s, i.e.,

△ = −y3(wy2 + ry + s), (4.55)
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where,

w = 4a0
3
c0, (4.56)

r = 27c0
2 − a02b02 − 18a0b0c0, (4.57)

s = 4b0
3
. (4.58)

To keep the discriminant (△) negative, we note that the quadratic polynomial of wy2 +

ry + s in (4.55) should be always positive. Under the given condition in (4.53), we know

that the coefficient w becomes negative since c0 is negative and a0 is positive. Besides,

we can find out that s becomes positive since b0 is come to be positive. Therefore, we can

derive the only positive root of wy2 + ry + s = 0 in the form of (−r −
√
r2 − 4ws)/2w

based on the fact that w < 0 and s > 0. In other words, this makes (4.55) be always

negative (△ < 0) when the square of the wavenumber y (= k2w) is within the range

described as follows:

0 < y <
−r −

√
r2 − 4ws

2w
(= k2w,cut). (4.59)

The cutoff wavenumber (kw,cut) as a function of the permeability or mobility (k), specific

heat (ρc), tangential modulus (Et), reference temperature (T0) and other material prop-

erties of porous media has also been sought in this study. Meanwhile, the influences of

the permeability and specific heat on the cutoff wavenumber are depicted in Figure 4.2.

The reciprocal of permeability shows a linear relation to the cutoff wavenumber in log-log

plane, however, the specific heat shows limited effect until it reaches to 1.0. In this regard,

we can find out that the permeability is closely related to the cutoff wavenumber while

the specific heat has little influence on it.

Within the range of cutoff wavenumber, three roots (one real and two complex con-

jugate roots) of the third-order characteristic equation can be determined by Cardano’s
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(a) Cutoff wavenumber vs. Permeability (ρc =
4.5kJ/m3/◦C)

(b) Cutoff wavenumber vs. Specific Heat
(kperm = 1.0× 10−3 m/s)

Figure 4.2: Relationship of the cutoff wavenumber with permeability and specific heat
under adiabatic condition

formula. By letting λ = z − a
3
, the third-order polynomial (4.48) can be rewritten as,

z3 + pz + q = 0, (4.60)

where,

p =
1

3
(3b− a2), q =

1

27
(2a3 − 9ab+ 27c). (4.61)

This equation has three roots that take the following forms,

z1 = A+B, z2,3 = −
A+B

2
± i
√
3

2
(A−B), (4.62)

where,

A =
3

√
−q
2
+

√
q2

4
+
p3

27
, B =

3

√
−q
2
−
√
q2

4
+
p3

27
. (4.63)

Therefore, we can rewrite the solution λ as follows,

λ1 = (A+B)− a

3
, λ2,3 = −

A+B

2
+
i
√
3

2
(A−B)− a

3
, (4.64)
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and distinguish the real part and imaginary part in the roots:

λr = −
1

2
(A+B)− a

3
, λi =

√
3

2
(A−B). (4.65)

By substituting the complex root into the damped harmonic equation like we did before

in (4.42), we have (note that λi = ω):

v(x, t) = Aeikwxeλrt−iωt = Aeikwxeλrt−iλit, v = [u, p, T ]T . (4.66)

Recall the relation between the phase velocity vp and the wavenumber kw,

vp =
|λi|
kw

. (4.67)

By means of t = x/vp, the damping term e(λr)t changes into ekw((λr)/|λi|)x = e−αx, where

α is the damping coefficient [81]. Notice that the thermo-hydro-mechanical coupling

introduces rate dependence to themechanical response, even if the solid phase continuum

does not exhibit any viscous behavior. As a result of this rate dependence, the internal

length scale l is introduced, i.e.,

l = α−1, α = − λr
|λi|

kw, (4.68)

in which λr and λi are obtained from (4.65). It is obvious that the definition of internal

length scale holds only for dynamic analysis. The damping coefficient α and the internal

length scale l can be expressed as below:

α =

∣∣A+B + 2
3
a
∣∣ kw√

3(A−B)
, l =

√
3(A−B)∣∣A+B + 2

3
a
∣∣ kw . (4.69)

Therefore, we can identify the internal length scale as a function of the mobility (k), spe-

cific heat (ρc), wavenumber (kw), reference temperature (T0), tangential modulus under

127



strain softening (Et) and other material properties as:

l = f (k, ρc, kw, Et,M, β, αm, T0) . (4.70)

Remark 2

In the adiabatic condition, we derived the cutoff wavenumber which guarantees the wave

propagation is possible. Within this range, we can analyze how the damping coefficient

changes along the wavenumber by normalizing it with the cutoff wavenumber in Figure

4.3.

Figure 4.3: Damping coefficient (α) vs. Normalized wavenumber

In this figure, we can see that the damping coefficient (α) approaches zero when the

wavenumber decreases, which is natural phenomenon considering the definition of α.

On the other hand, the damping coefficient approaches to infinity when the wavenumber

converges to the cutoff value, which states that the internal length scale, a reciprocal of

α, vanishes. This fact is also analogous to the case of long wavelength limit under the

non-isothermal condition (4.47). The effect of permeability (or mobility, k) and specific

heat (ρc) of porous media on the internal length scale is compared in Figure 4.4. We can

see that the permeability has proportional relation to the internal length scale while the
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(a) Internal length scale vs. Permeability (ρc =
4.5kJ/m3/◦C)

(b) Internal length scale vs. Specific Heat
(kperm = 1.0× 10−3 m/s)

Figure 4.4: Relationship of the internal length scale with the permeability and specific
heat under the adiabatic condition

specific heat has limited effect.

4.3 Numerical experiments

To illustrate the influences of thermo-hydro-mechanical coupling on the width of local-

ization zone, we use an implicit dynamic finite element code to simulate one-dimensional

wave propagation in a thermo-sensitive fully saturated porous bar with different set of

material parameters. Our objective here is to use the numerical experiments to (1) verify

the theoretical analysis on the phase velocity and internal length scales in Section 4.2.2

and (2) confirmwhether mesh dependency occurs when the physical internal length scale

is predicted to be vanished according to (4.47) and (4.70).

As mentioned previously in Section 4.2.3, we did not obtain the expression of inter-

nal length scale for the non-isothermal condition, as the general algebraic expression of

the internal length scale does not exist according to the Abel-Ruffini theorem [261]. As a

result, we first limit our focus on the adiabatic condition and performed numerical exper-

iments to validate the analytical expression of the internal length scale. We then analyze

the simulated wave propagation behavior of the non-isothermal condition with a series
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of numerical simulations under the different thermal conductivities. The changes of wave

propagation behaviors observed in the numerical simulations due to changes of the ther-

mal conductivity are also compared. We found that the observed behavior is consistent

with the phase velocity expressed in (4.46).

Figure 4.5: One dimensional soil bar in axial compression

Figure 4.6: Applied stress and local stress-strain diagram

The numerical model consists of a softening bar constrained to move in only one di-

rection. In addition, heat transfer and pore-fluid diffusion are also confined to be one-

dimensional. The length of the bar is 10 m. At x = 0 m, the bar is fixed and has zero

displacement, while a perturbation of force is applied at x = 10 m. Both pore pressure

and temperature are prescribed as zero at x = 10m. A constant time step△t = 1.0×10−2

sec. is used to all the numerical simulations. The absolute mass densities of soil and fluid

are selected as ρs = 2, 700 kg/m3 and ρf = 1, 000 kg/m3. The elastic and tangential

moduli under strain softening are assumed to be 30 MPa and −20 MPa, respectively, and

the Biot’s modulus (M ) is considered to be 200 MPa. The reference temperature T0 is set

to be 20 ◦C , and the numerical condition of applied stress and local stress-strain diagram

are depicted with boundary conditions in Figures 4.5 and 4.6. Here, t0 is set to be 0.1 sec.,

qt0 is applied as 500 kPa, and σy values are indicated in the figures for each simulation.
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Table 4.2: The internal length scale under the different conditions (Adiabatic case)

kperm(m/s) ρc(kJ/m3/◦C) l(m)(kw = 1.0) Comparison
5.0 ×10−3 4.5 4.10 the reference
2.5 ×10−2 4.5 0.19 permeability change
5.0 ×10−3 2.4 ×10−2 0.94 specific heat change

4.3.1 Adiabatic case

The reference case of internal length scale under the adiabatic condition is calculated with

the permeability (kperm) of 5.0×10−3 m/s and the specific heat (ρc) of 4.5 kJ/m3/◦C. The

internal length of each case is described in the following Table 4.2 when the wavenumber

is assumed to be unity. The numerical simulations are investigated with the element size

of 0.4 m.

The reference case gives the internal length scale of 4.10 m and the plastic wave is able

to propagate. We can verify this from the numerical simulation results depicted in Figure

4.7. Nevertheless, in another two numerical experiments, one with increased permeability

and the other with lowered specific heat, the harmonic wave ceases to propagate and the

plastic zone seizes at a certain depth as shown in Figure 4.8. This fixed plastic zone with

time indicates that the wave is unable to propagate. This observation is consistent with

(4.69) and the relationship among the internal length scale, permeability and specific heat

showcased in Figure 4.4. Similar plastic strain patterns were noticed by Zhang, Sanavia,

and Schrefler [81] in dynamic wave propagation simulations under the isothermal condi-

tion.

4.3.2 Non-isothermal case

With the results shown in Figure 4.7 as the reference, we vary the thermal conductivity

and determine how the thermal conductivity affects wave propagation. We assumed that

the thermal conductivities of fluid and solid are the same and selected the value from

the previous study by Sun [19], κ = 2.5 × 10−3 kW/m/◦C. According to our previous
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Figure 4.7: Development of the localization zone under possible wave propagation - the
plastic strain moves towards the depth along the time (the reference condition, permeabil-
ity = 5.0× 10−3 m/s, ρc = 4.5 kJ/m3/◦C, σy =30 MPa)

(a) Permeability change (kperm = 2.5×10−2m/s,
σy = 34 MPa)

(b) Specific heat change (ρc =
2.2×10−2kJ/m3/◦C, σy = 30 MPa)

Figure 4.8: Development of the localization zone under no wave propagation - the plastic
strain stays at the same depth along the time
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analysis, both thermal conductivity and permeability can influence on the behavior of the

THM system (Figure 4.1). In order to analyze this effect, we conducted parametric study

of thermal conductivity under two permeability conditions: (1) 5.0 × 10−3 m/s from the

reference case in Section 4.3.1, and (2) 1.0× 10−10 m/s as low permeability case. A series

of numerical simulations are performed by varying the thermal conductivities provided

that the specific heat (ρc) is assumed to be 4.5 kW/m/◦C.

Firstly, we introduced the thermal conductivity into the reference case and conducted

the numerical simulation. When κ = 2.5 × 10−3 kW/m/◦C was adopted, the numerical

simulation showed little change in the plastic strain compared to the adiabatic condition

in Figure 4.7. However, when the thermal conductivity is increased to 1.0 kW/m/◦C, we

found the wave propagation behavior started to change. These results are depicted in

Figure 4.9. The plastic strain is increased compared to the adiabatic case, and the plastic

wave is still able to propagate along time. Considering the initial and boundary conditions

of temperature field, we expect that the prescribed zero temperature at the surface (10 m)

contributes additional compression to the one-dimensional bar.

Figure 4.9: Developement of the localization zone (non-isothermal condition with κ = 1.0
kW/m/◦C, σy = 30 MPa)

Next, we started from the numerical set up of adiabatic limit with the permeability

equal to 1.0× 10−10 m/s. When the thermal conductivity of 2.5 ×10−3 kW/m/◦C was ap-

plied, the response of plastic strain gave little effects compared to the adiabatic condition.
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(a) κ = 2.5× 10−3 kW/m/◦C (b) κ = 1.0 kW/m/◦C

Figure 4.10: Developement of the localization zone of non-isothermal condition with
different thermal conductivities - plastic zone moves toward the depth along the time
(kperm = 1.0× 10−10 m/s, ρc = 3.5 kW/m/◦C, σy = 3.8 MPa)

When κ became larger than 1.0 ×10−1 kW/m/◦C, however, we found the changes of plas-

tic localization zone. Figure 4.10 depicts the changes of wave propagation with different

thermal conductivities under the low permeability condition. We can identify that both

permeability and thermal conductivity influence on the behavior of wave propagation

under strain softening from Figures 4.9 and 4.10.

Furthermore, we took two cases in Section 4.3.1, in which the wave was not able

to propagate, and re-analyzed the simulations by introducing the thermal conductivity.

Again, the thermal conductivity of 2.5×10−3 kW/m/◦C showed little effect on both cases.

Figure 4.11 shows when κ = 1.0 kW/m/◦C was applied. We can see the width of localiza-

tion zones and the plastic strains are increased compared to adiabatic case in Figure 4.8.

However, the plastic wave does not propagate along time. This indicates that the thermal

conductivity appears limited effect on regularization.

Remark 3

We conducted additional numerical simulations for the non-isothermal case to analyze

the influence of mesh size on shear band width. The permeability of 1.0 × 10−10 m/s
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(a) Permeability change (kperm = 1.0×10−2m/s,
σy = 34 MPa)

(b) Specific heat change (ρc = 2.2×10−2

kJ/m3/◦C , σy = 30 MPa)

Figure 4.11: Development of the localization zone under no wave propagation - the plastic
strain stays the same depth along the time (Non-isothermal condition, κ = 1.0 kW/m/◦C)

was selected to have enough internal length scale for stability. The thermal conductivity

(κ = 2.5 × 10−3kW/m/◦C) and the specific heat (ρc = 4.5 kJ/m3/◦C) were adopted from

the previous study by Sun [19]. The one-dimensional domain were discretized by 10,

20, 25, 30 linear finite element of equal sizes to study mesh dependency. As shown in

Figure 4.12 (a), the plastic strain distribution from the numerical simulations suggests

mesh independence. In addition, Figure 4.12 (b) describes temperature field distribution

of the numerical simulations for the non-isothermal condition. With the same material

properties used in the mesh study, the domain with 25 elements is selected. We can see

how the temperature changes with different thermal conductivities.

4.4 Conclusions

The one-dimensional wave propagation in a full saturated, thermo-sensitive porous

medium has been analyzed. The stability analysis indicates that the governing equations

of the thermo-hydro-mechanics system leads to a characteristic polynomial at least one

order higher than the isothermal poromechanics counterpart. By applying the Routh-

Hurwitz stability criterion to this higher-order characteristic polynomial, we determine
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(a) Plastic strain along the bar under different
mesh conditions (κ = 2.5× 10−3kW/m/◦C))

(b) Temperature field results under different ther-
mal conductivities (with 25 elements)

Figure 4.12: Independence of the strain localization zone width under different mesh sizes,
and limited changes of temperature field along the bar under various thermal conductivi-
ties (at t = 1.0 sec with kperm = 1.0× 10−10m/s, ρc = 4.5kJ/m3/◦C)

that instability may occur if (1) strain softening occurs and/or (2) specific heat per mass

is less than a critical value proportional to Biot’s modulus and the square of the thermal

expansion coefficient and (3) when both permeability and thermal conductivity are zero.

Dispersion analysis on the THM system reveals that a dispersive wave may propagate in

a fully saturated, thermo-sensitive system under certain limited conditions. Nevertheless,

the internal length scale introduced by the thermo-hydro-mechanical coupling vanishes

at the short wavelength limit. For the adiabatic limit case, we derive an explicit expression

of the internal length scale as a function of permeability, specific heat, wavenumber and

other material properties. The cutoff wavenumber is also identified. Our results indicate

that there is a limited range of wavenumbers that allows dispersive waves to propagate

at finite speeds.
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Chapter 5

Numerical techniques and solution strategies for coupled

multiphysics mechanisms in crystalline solids and

geomaterials

In this chapter, Sections 5.2.1, 5.2.2, and 5.2.3 are reproduced from the published papers: Na

and Sun [177]; Na and Sun [75].

5.1 Introduction

This chapter covers specific numerical issues, which can be potentially raised from the

muliphysics problems, and how we resolve those topics in terms of numerical and phys-

ical aspects. Firstly, we focus on the stability of numerical solutions and the efficiency

of computational calculations. Because the numerical system of multi-component prob-

lems are often constructed by the equal-order dimensional spaces for each component,

the inf-sup condition is not satisfied in the limit cases. In addition, the system of equa-

tions has high condition number due to different physics. The stabilized procedure and

preconditioning strategy associated with monolithic simulations are addressed to solve

those numerical issues. We further introduce the operator-split scheme to resolve the

multiphysics problem including fracture behavior. Next, we discuss the computational
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methods to regularize the local constitutive law, which leads to pathological mesh depen-

dence in strain localization problems. The scale dependence in multiphase materials is

further addressed in terms of the plastic length scaled introduced by the nonlocal consti-

tutive model. By leveraging that nonlocality, we cover the adaptive meshing strategy that

updates the plastic internal variables based upon the concept of Lie algebra and configu-

rational force.

5.2 Inf-sup, preconditioing, and operator-split

The lack of two-fold inf-sup condition is caused by the usage of equal-order finite dimen-

sional space for displacement, liquid water pressure and temperature. This well-known

effect has been intensively studied for poromechanics problems in the last few decades

[16, 19, 43, 178, 263, 264]. Here, we adopt the stabilization procedure to overcome this nu-

merical deficiency in the system of frozen porous media covered in Section 2. To ensure

that the stabilization procedure we used leads to stable results, we introduce a new nu-

merical test called weak two-fold inf-sup tests to check whether solution remains stable

for arbitrary mesh size. We then address a system of equation with high condition num-

ber due to unknown variables with different physical features: displacement, pressure,

temperature. Here we propose a possible solution to overcome this problem, which is a

preconditioner specialized for the THM system to speed up the simulations. Lastly, the

operator-split scheme, an alternative method of monolithic approach, for multiphysics

problems associated with fracture is addressed, the relevant topic is covered in Section 3.

5.2.1 Spatial stability and two-fold inf-sup tests

In classical poromechanics FEM models that employ solid displacement and pore pres-

sure as the prime variables, the interpolated pore pressure field is known to suffer from

spurious oscillation in the undrained limit [24, 265] if displacement and pore pressure are

138



spanned by the same basis function. The cause of the problem is due to the lack of inf-sup

condition [24, 43, 209]. Similar spurious oscillations have been addressed in THMproblem

with the equal-order finite element when the prime variables of the displacement, pore

pressure and temperature were considered in a very fine temporal discretization or near

the undrained limit [19, 252]. Previously, Liu et al. [252] introduced an interior-penalty

procedure on the discrete Galerkin model of the thermo-hydro-mechanics problem in geo-

metrically nonlinear range. On the other hand, Sun [19] analyzes the cause of the spurious

oscillation of pore pressure and temperature and proposes a projection-based stabilization

method for the finite-strain thermo-hydro-mechanical problem to eliminate the spurious

modes in the pore pressure and temperature [266]. In this study, we adopt the polynomial

projection scheme of Sun [19] to stabilize the THM problems, in which the inf-sup defi-

ciency of equal-order finite element is counterbalanced using stabilization terms based on

the weak two-fold inf-sup condition. Nevertheless, a systematical numerical procedure

to test the validity of the stabilization procedure has not yet proposed.

Our starting point is the result from Howell and Walkington [267] which proves that

saddle-point problems containing more than two solution fields require the two-fold inf-

sup condition to maintain spatial stability [19, 178]. By considering the finite element

model with a saddle point structure form: (uh, phL , T h) ∈ V h
u×V h

pL×V
h
T , where V h

u, V h
pL

and V h
T are the finite dimensional spaces chosen for displacement, liquid water pressure

and temperature interpolations, the discrete two-fold inf-sup condition holds if and only

if there exists a constant C0 > 0 such that,

sup
wh∈V h

u

∫
B

(
aphL + bT h

)
∇x·whdV

∥wh∥V h
u

≥ C0

(
∥phL∥V h

pL
+ ∥T h∥V h

T

)
where, (phL , T h) ∈ V h

pL × V
h
T . (5.1)

Note that the coefficients of a and b are described by SL, SC(= 1 − SL) and pC which

are functions of liquid water pressure and temperature fields (i.e., a = ∂(SLpL)/∂pL +
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∂(SCpC)/∂pL, b = ∂(SLpL/∂T )+ ∂(SCpC)/∂T ); ∥ · ∥V h
u
, ∥ · ∥V h

pL
and ∥ · ∥V h

T
are the norms

corresponding to the finite dimensional spaceV h
u, V h

pL and V
h
T . The same associated norms

are equipped to the solution spaces and their corresponding test functions. We choose the

norm ∥·∥V h
u
= ∥·∥1 and ∥·∥V h

pL
= ∥·∥V h

T
= ∥·∥0, where ∥·∥k indicates the standard Sobolev

norm of order k, which leads to the relation, C0

(
∥phL∥V h

pL
+ ∥T h∥V h

T

)
≥ C0

(
∥phL + T h∥0

)
.

Adopting the same basis functions for displacement, liquid pore pressure, and tem-

perature leads to a formulation that lacks the two-fold inf-sup condition as stated in (5.1).

However, as pointed out in Sun [19], the spurious pressure and temperature oscillation

due to the lack of two-fold inf-sup condition can be eliminated by introducing the addi-

tional gradient or projection terms that counterbalance the inf-sup deficiency. This study

adopted the projection stabilization scheme to eliminate the spurious oscillations. Note

that an analytical proof of the inf-sup condition for a particular choice of finite dimen-

sional spaces can be difficult [268]. As an alternative, we introduce the usage of numerical

inf-sup test [234, 264, 268–271] for analyzing the thermo-hydro-mechanical formulation.

The underlying idea of this inf-sup test is to consider the liquid water pressure and tem-

perature fields together as a product space and introduce proper norms for this product

space. Following this step, one may solve a series of generalized eigenvalue problems of

(5.2) corresponding to the inf-sup condition (cf. (5.1)) for a selected number of elements,

that is,

GhV h = λShV h, (5.2)

where λp is the smallest non-zero eigenvalue, in which
√
λp corresponds to the inf-sup

value; the matrices Gh and Sh are defined for a given finite element discretization, as

detailed in reference Bathe [268] and Chapelle and Bathe [269]. To perform a two-fold

inf-sup test for the product space, one may partition the Jacobian matrix of (2.73) such
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that,


A B1 D1

B2 C E1

D2 E2 F

→
 A H1

H2 K

 , (5.3)

where H1 =

[
B1 D1

]
, H2 =

B2

D2

 , and K =

C E1

E2 F

 .
We limit our focus in a very fine temporal discretization in which the heat transfer and

pore-fluid diffusion terms are both assumed to be minor. Note that this limit case leads

the matrices H1 and H2 to be H1 ≈ HT
2 = H.

Following Chapelle and Bathe [269] and Bathe, Iosilevich, and Chapelle [270] and two-

fold inf-sup test of Howell and Walkington [267] and Sun and Mota [234] based on (5.1)

and (5.3), the matrices for the eigenvalue problem in (5.2) are represented as,

Gh = HhKh(Hh)T and (wh)TShwh = ∥wh|2
V h

u
, (5.4)

where Hh and Kh are the expressions of H and K discretized by shape functions (2.72).

Meanwhile, the expression of Gh depends on the choice of weighted norm equipped for

the product space of the interpolated pore pressure and temperature. In our case, we

follow the procedures depicted in Bathe, Iosilevich, and Chapelle [270], Bathe et al. [272],

and Sun, Cai, and Choo [273] and simply use the condensed lower diagonal matrix Kh to

form the weighted norms. It should be noted that this particular Gh is not the only valid

choice. For instance, one may also replace Kh with its inverse in (5.4) such that the two-

fold inf-sup test is directly related to the statically condensed system of equations as have

done in Sun andMota [234]. However, as pointed out in Chapelle and Bathe [269], a choice

that involves inversed matrix may likely increase the computational cost for evaluating

the inf-sup tests due to the fact that the inverse matrix is more dense and the inverse
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operation can also be costly. Sh, which is referred as the norm matrix in Chapelle and

Bathe [269], is obtained from the linear operator that gives the norm ∥ · ∥V h
u
following

Bathe [268], in which ∥uh∥21 =
∫
B
∇x u · ∇x udV (cf. Sun [19], Mira et al. [264], and

Pantuso and Bathe [274]).

Note that the numerical inf-sup value is sensitive to the norms chosen to construct the

inf-sup test. While the existence of the inf-sup value and hence the validity of the inf-sup

condition can be proved by any equivalent norms, the actual choice of the norms used

to construct the inf-sup test may affect the trend of the numerical inf-sup values upon

mesh refinement [271, 272]. Here we select the problem of 1D thawing consolidation for

the numerical inf-sup test. The problem description including boundary conditions can

be found in Section 2.5.1. The number of elements with 4, 8, 16 and 32 are selected for the

numerical inf-sup test (Fig. 5.1). The stabilized inf-sup value is bounded which indicates

the test is passed (e.g. Mira et al. [264], Bathe [268], Bathe, Iosilevich, and Chapelle [270],

and Bathe [271]).
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Figure 5.1: Inf-sup test of 1D thawing consolidation (the results from the number of ele-
ments with 4, 8, 16 and 32 are presented)
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5.2.2 Pre-conditioner for three-field system

It is well acknowledged that the implicit monolithic solvers for mixed finite element may

lead to ill-conditioning tangential matrix system [208, 275]. Since the residuals of the bal-

ance of mass, linear momentum and energy are all of different units, the eigenvalues and

singular values of the block matrix system could be of several orders of difference and in

different signs. Presumably, direct solvers such as Gaussian elimination may allow one

to obtain incremental updates even when condition number of the tangent is high, pro-

vided that the condition number is still sufficiently small compared with the inverse of the

machine error. Nevertheless, the direct solvers are often slower due to the significantly

higher numbers of arithmetic operations. Another feasible possibility to resolve this is-

sue is to design a proper pre-conditioner and then use it with an iterative solver. This

approach is adopted in this study. The implementation of the preconditioner leverages

the open source finite element library, deal.II (cf. Bangerth, Hartmann, and Kanschat

[204] and Bangerth et al. [205]) interfaced with p4est mesh handling library [206], and

algorithm libraries from the Trilinos project [207]. When the coupled thermo-hydro-

mechanical (THM)model is solved in an implicit monolithic scheme, the nonlinear system

of equations may leads to a three-by-three block-partitioned tangential matrix through a

consistent linearization process (Section 2.4.2).

In this study, we extended the block-preconditioned Newton-Krylove solvers for orig-

inally designed for a u/p formulation by Dawson et al. [276] and White and Borja [208].

The underlying idea is to simply consider the space of the interpolated pore pressure and

temperature fields as a product space and design a pre-conditioner such that,

P−1Jx = P−1b, (5.5)

where J is the Jacobian; x is the solution fields; b is the residuals; P−1 is the preconditioner.

The strategy of preconditioning is to choose P ≈ L such that P−1J ≈ U when a block LU
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factorization of J is concerned as J = LU, in which the quality of this approximation

determines how fast the Krylov solver converges [208]. In this study, we first express the

3 by 3 system of equations (2.73) into 2 by 2 system as written in (5.3). In this case, the

block Schur complement with respect to A is S = K − H2A−1H1 (cf. Demmel, Higham,

and Schreiber [277]). Therefore, the template using the “exact” preconditioner and its

approximation can be described as,

P−1 =

 A−1 0

S−1H2A−1 S−1

 ≈
 P−1

A 0

P−1
S H2P−1

A P−1
S

 . (5.6)

Note that the exact inverses A−1 and S−1 are too expensive to compute, which requires

designing good approximations (P−1
A and P−1

S ). In particular, we extend the approximation

of Schur complement (S) for THM problem based on the hydro-mechanical systems [208]

as,

SM = KD − αM, (5.7)

where M =

MpL 0

0 MT

 with [Mπ]
a,b
e =

∫
B

NaNbdV, (π = pL, T ) .

Here, we choose KD with matrices at diagonal positions (C and F) to simplify and im-

prove the calculations based on physics point of view (assuming weak coupling between

pressure and temperature) [204, 205, 208]. In addition, M is the extended mass matrix in-

cluding liquid water pressure and temperature fields. Themethods to estimate the optimal

coefficient α and the approximation of A−1 and S−1 for the block Krylov solver in isother-

mal poromechanics problem can be found in White and Borja [208] and White, Castel-

letto, and Tchelepi [194]. Note that it is also possible to estimate an optimal choice of α

for thermo-hydro-mechanical problems. In such a case, the parameter α should be differ-

ent for each block to deliver the optimal performance. One feasible strategy can be found

144



Table 5.1: Residence norm (square root of the inner product of residual column vector)
and the number of Krylov iterations at the selected Newton steps for comparison of pre-
conditioning strategy (coarse mesh condition with the total degrees of freedom 120)

Newton Steps
No Preconditioning Diagonal Preconditioning Current Preconditioning

RHS norm Krylov
Iteration RHS norm Krylov

Iteration RHS norm Krylov
Iteration

Trial Step 5.9E-03 7839 5.9E-03 4 5.9E-03 4
Iteration 1 1.9E-01 2575 1.9E-01 4 1.9E-01 4
Iteration 5 1.1E-03 7335 1.1E-03 4 1.1E-03 4
Iteration 10 7.5E-10 6951 7.5E-10 4 7.5E-10 4
Solve time (s) 3.10 0.16 0.16

in the interesting works done by White, Castelletto, and Tchelepi [194] and Kim [278],

where the relationship of the operator-split solvers (fixed stress split [279]); adiabatic

split [280]) can be exploited for the pre-conditioners. The improvement of precondition-

ing strategy for thermo-hydro-mechanical formulation will be considered in the future.

Nevertheless, based on the evidences collected from the numerical experiments, even the

simple preconditioning strategy in (5.6) has already provided significant improvement in

efficiency for THM solvers. In these numerical tests, we adopt the thawing consolidation

problem as a benchmark to evaluate the efficiency of the preconditioning strategy within

the infinitesimal deformation range. The detailed problem descriptions are provided in

Section 2.5.1. Due to the difference in scales of the tangential term with respect to the

displacement (e.g. tangential stiffness), pore pressure (e.g. hydraulic conductivity) and

temperature (e.g. thermal conductivity), the thawing consolidation may lead to a highly

nonlinear problem whose consistent tangents can be very ill-conditioned (i.e. with a very

high condition number).

To evaluate the efficiency of different preconditioning strategies, we first introduce

a coarse mesh (the total number of unknowns is 120 with 72 degrees of freedoms for

displacement, 24 for liquid water pressure and another 24 for the temperature fields)

and solve the corresponding system of equations with and without applying the pre-

conditioners. The number of iterations required to obtain the converged solution from

the solver without any no-preconditioning strategy is compared against the counterparts
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Table 5.2: Residence norm (square root of the inner product of residual column vector)
and the number of Krylov iterations at the selected Newton steps for comparison of pre-
conditioning strategy (refined mesh condition with the total degrees of freedom 420) –
No preconditioning case does not yield converged solution within 50,000 iterations with
the same tolerance (10−9)

Newton Steps
Diagonal Preconditioning Current Preconditioning

RHS norm Krylov
Iteration RHS norm Krylov

Iteration
Trial Step 1.6E-02 38 1.6E-02 13
Iteration 1 1.6E-01 19 1.6E-01 15
Iteration 5 1.9E-03 16 1.9E-03 13
Iteration 10 7.4E-10 17 7.4E-10 13
Solve time (s) 10.2 5.28

in which two different preconditioning strategies are used (Table 5.1). For comparison

purposes, in addition to the pre-conditioner introduced in (5.7), we implement a simpler

block-diagonal pre-conditioner where each diagonal block is separately inverted and no

Schur-complement approximation is introduced, which is one of the simplest approaches

one might use in practice. The preconditioining strategy for the current study saves the

calculation time by reducing the Krylov iterations. Regardless of whether a precondi-

tioner is used, the norm of the residual obtained after each Newton iteration step is iden-

tical as expected. Although there is no significant difference between the diagonal and

current preconditioning strategies, the number of Krylov iterations is significantly re-

duced in both cases – an indication that both pre-conditioners are effective for this simple

problem.

To analyze how mesh refinement affects the performance of the pre-conditioners, we

re-run the numerical experiments with a finer mesh (the total number of unknowns is 420

with 252 degrees of freedoms for displacement, 84 for liquid water pressure and another 84

for the temperature fields). In this case, the solver without any pre-conditioner does not

yield converged solution within 50,000 iterations with the same tolerance (10−9). How-

ever, the solvers equipped with either pre-conditioner is still able to deliver converged

solution, as shown in Table 5.2. This result also indicates that the pre-conditioner in (5.7)
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outperforms the simpler diagonal pre-conditioner. It requires less Krylov iterations in

each Newton-Raphson step and is approximately 48% faster. Both numerical experiments

indicate the importance of pre-conditioners on the solver performance.

5.2.3 Operator-split solution strategies

Due to nonlinearity and path-dependence nature of the proposed model, linearizing the

system of equations is necessary if an implicit solver is used. In this work, the system of

equations is multi-physical. As a result, this system of equations can be solved either in

a monolithic or operator-split manner [193, 194]. As previously numerical experiments

with single phase-field problems show that the operator splitting approach may poten-

tially be more robust [125, 165], we propose a semi-split iterative strategy. In this proce-

dure, the multiple phase fields are advanced followed by the thermo-mechanical solver,

which updates the displacement and temperature fields together. These sub-systems are

iteratively updated until all the residuals are below the tolerance.

In the proposed operator-split setting, the crack driving force Hi (3.50) is fixed while

the multiple phase-fields are updated. As a result, the split multi-phase-field incremental

problem becomes linear. The schematic of solution strategies is summarized as follows:


un

θn

dn

 R(u,θ)=0−−−−−→
δd=0


un+1

θn+1

dn


︸ ︷︷ ︸

Iterative solver

Linear solver︷ ︸︸ ︷
R(d)=0 with Hn+1−−−−−−−−−−→

δu=0, δθ=0


un+1

θn+1

dn+1

, (5.8)

where R(u, θ) and R(d) are residuals expressed as follows:

R(u, θ) :=
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

∫
B

∇η : σn+1dV −
∫
∂B

η · tn+1dΓ,∫
B

ψcv

(
θn+1 − θn

∆t

)
dV −

∫
B

ψ

[∑
α

(παn

(
γαn − γαn−1

∆t

)
+ gαn

(
sαn − sαn−1

∆t

)]
dV

−
∫
B

ψ

[
3αKI :

(
ϵen − ϵen−1

∆t

)]
θn+1dV +

∫
B

∇ψ · κ∇θn+1dV −
∫
∂B

ψq̄n+1dΓ,

(5.9)

R(di) :={∫
B

ϕi
[
2(1− din+1)Hin+1

]
dV +

∫
B

Gc

l

[
ϕidin+1 + l2∇ϕi · ωi · ∇din+1

]
dV. (5.10)

These equations are consistent with (3.73) to (3.75), in which the backward Euler method

is used for time discretization for heat transfer. Under the iterative solver in (5.8), the

solutions are advanced followed by Algorithm 3. This procedure requires the consistent

Algorithm 3 Solution strategies using iterative and linear solvers
Require: Compute un+1, θn+1, and dn+1

1: Initialize: k = 0, uk = un, θk = θn, and fix dn
2: while ∥ R(u, θ) ∥≥ Tolerance do
3: Compute ∆u, ∆θ:

δR(u, θ)

[
∆u
∆θ

]
= −R(u, θ)

4: Update uk+1, θk+1[
uk+1

θk+1

]
=

[
uk

θk

]
+

[
∆u
∆θ

]
5: end while
6: un+1 ← uk+1, θn+1 ← θk+1

7: Update: Hn+1 using updated un+1 and θn+1

8: Compute dn+1 by solving the linear problems of multiple phase-field variables
9: end

tangent δR of the operator-split sub-problem, which is described in the following section.

To obtain the incremental updates of the multiple phase fields, the updated Hi from the

displacement and temperature variables at time tn+1 is incorporated into the linear phase

field solver. We then update the phase-field variables as in (5.8). To simplify the imple-

mentation, the temporal discretization of plastic dissipation and structural heating, i.e.,
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the term Dmech − Hθ in (3.38) is treated explicitly. As shown in previous work such as

Wang and Sun [29, 30] and Wang and Sun [155], this semi-implicit approach can be ef-

fective if used properly. Finally, it should be noticed that one may choose other partition

strategies to solve the same system of equations. For instance, the thermo-mechanical

problem can also be solved using an isothermal or adiabatic approach. The exploration

of different partition strategies and the construction of the proper pre-conditioners are

important subjects but are out of the scope of this dissertation.

5.3 Nonlocality and adaptive mesh refinement

The nonlocal Cam-Clay model is presented associated with micromorphic settings. Start-

ing from the critical state plasticity theory [281, 282], the regularization is achieved by

considering global and local internal variables linked by penalty term in a modified hard-

ening equation in the local constitutive model. The global and local internal variables are

then resolved together via the modified Helmholtz equation which adopts a plastic length

scale introducing size effect (e.g. Aldakheel [148], Forest [283], Miehe, Teichtmeister, and

Aldakheel [284], and Miehe, Aldakheel, and Teichtmeister [285]). This numerical frame-

work that connects the local and global internal variables may guide us to establish a new

nonlocal constitutive model base upon the existing local plasticity model. By leveraging

the nonlocal constitutive laws, we then develop adaptive mesh refinement to enhance

computational efficiency based on configurational force and Lie algebra. Therefore, the

adaptive mesh refinement near the critical regions (i.e. shear, compaction, and dilation

bands in sand, clay, and rocks) is an efficient tool for the strain localization problems (cf.

Ortiz and Quigley IV [286], Verfürth [287], and Schrefler, Secchi, and Simoni [288]), pro-

vided the regularized material responses are achieved based on a nonlocal model. Here

our focus lies on how to properly perform the mesh refinement on problems involving

history dependent materials (cf. Ortiz and Quigley IV [286]).
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5.3.1 Micromorphic approach for nonlocal critical state plasticity

The local constitutive model for plasticity or damage under softening behavior exhibits

the pathological mesh dependence in finite element implementations. In other words, the

size of finite elements by spatial discretization controls the deformation localization zones.

One of the approaches that can resolve this issue is to use the gradient plasticity model

that constrains the width of localization zone by utilizing the plastic length scale, which

influences the plastic dissipation. Here we construct this gradient plasticity model based

upon the existing critical state plasticity law, the modified Cam-Clay [282], by leveraging

the micromorphic regularization approach.

The main difference between the local and nonlocal modified Cam-Clay models lies in

the hardening equation. In order to describe the nonlocal constitutive law, we start from

the yield surface equation, that is, a two-invariant yield surface for plastic response based

upon the effective stress (σ′),

fy =
q2

M2
+ p′(p′ − p′c) = 0. (5.11)

Here p′c < 0 is a plastic internal variable determining the size of yield surface, that is

known as the preconsolidation pressure. The mean normal stress p′ and deviatoric stress

q are defined by,

p′ =
1

3
tr(σ′), q =

√
2

3
∥ s ∥, s = σ′ − p′I. (5.12)

In this theory, the hardening law for the current model takes the form,

ṗ′c = −
ε̇pv

cc − cr
p′c, (5.13)

under the condition of 0 < cr < cc, which accommodates the bilogarithmic relationship

between the specific volume and the preconsolidation pressure. ϵpv indicates the plastic
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volumetric strain.

For the nonlocal constitutive model, we express the hardening equation as a residual

form that is considered as an additional equation in the local nonlinear system. Base upon

the given exact expression of the hardening parameter p′c, we extend this relation to link

the local internal variable (ᾱ ≡ p′c) and the global micromorpihc variable (α). Introduc-

ing the penalty parameter [148] leads to the discrete hardening equation expressed as a

residual form,

fr = p′c − p′c,old exp
(
εev − εe trial

v

cc − cr

)
+ ϵp(ᾱ− α) = 0. (5.14)

Here we note again that the local internal variable ᾱ is equal to p′c, which is linked to the

global micromorphic variable α by the penalty parameter ϵp. The local nonlinear system

of equations, therefore, is assembled by the local residual vector (r) and the unknown

vector (x),

r =



εev − εe trial
v +∆λ∂p′f

εes − εe trial
s +∆λ∂q′f

fy

fr


; x =



εev

εes

∆λ

p′c


; a = r′ (x) , (5.15)

which is solved by a local Newton’s iteration approach. More details about the process

of the return mapping algorithm and calculation of the Jacobian can be found from the

previous works [54, 61].

With these two local and global internal variables in mind, the micromorphic regular-

ization setting is constructed by formulating the modified Helmholtz equation,

α− l2p∆α = ᾱ. (5.16)

This additional governing equation connects both the local internal variable ᾱ = p′c and
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the micromorphic variable α associated with the plastic length scale lp, which prevents

mesh sensitivity of the materials under the strain localization phenomena. The associated

Neumann boundary condition of the micromorphic equation is used in the form,

∇α · n = 0 on ∂B. (5.17)

By constructing the hardening relation in local plasticity model associated with the micro-

morphic regularization setting, we establish the nonlocal critical state plasticity model. In

other words, this approach may shed light on easily establishing nonlocal models based

upon the Cam-clay type constitutive laws.

This micromorphic setting can be combined with the existing governing equations.

Associated with the u-p formulation for saturated porous media (e.g. White and Borja

[209]), for example, the modified Helmholtz equation (5.16) is augmented as an additional

governing equation. In this case, we may write the local forms of the balance equations

as,

∇ · (σ′ − pI) + ρg = 0 (Momentum Balance). (5.18)

∇ · u̇+∇ ·
(
− 1

ρfg
k · ∇p

)
= 0 (Mass Balance). (5.19)

α− l2p∆α = ᾱ (Micromorphic Regularization). (5.20)

Here, σ = effective Cauchy stress tensor, p = excess pore pressure, I = second-order

unit tensor, u = displacement field for the solid matrix, ρ = density of the mixture in the

saturating fluid, g = vector of gravity accelerations, k = tensor of hydraulic conductivi-

ties, ρf = density of the fluid phase, and g =∥ g ∥.

The operator-split solution strategy (cf. Section 5.2.3) is adopted to solve the prob-

lem. To be specific, the momentum and mass balance equations are advanced monolithi-

cally followed by the micromorphic regularization equation. This approach simplifies the
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Figure 5.2: The conceptual illustration of the interaction between the local (ᾱ) and global
(α) variables

derivation of the local Jacobian for Newton’s iteration and the global consistent lineariza-

tion procedure. Therefore, the finite element discretization of (5.18) and their linearization

are straightforward because no couplings need to be constructed under the micromorphic

setting. Note that the equal-order finite element approach is adopted, where we use the

stabilization scheme to resolve inf-sup deficiency under undrained condition by White

and Borja [209]. Figure 5.2 conceptually describes how the global and local iterations are

connected.

5.3.2 Recovery of internal variables using Lie-group interpolation

We then leverage the nonlocal constitutive laws via adaptive mesh refinement to enhance

computational efficiency. While increasing the number of degrees of freedom is an ob-

vious remedy to improve the quality of finite element solutions (e.g. Díaz, Kikuchi, and

Taylor [289]), this approach naturally demands the more computational resources and

is inefficient to capture the localization of deformation. Furthermore, modeling strain

localization with conventional finite element method often leads to pathological mesh

dependence by strain softening (e.g. Needleman [226]). Therefore, the adaptive mesh re-

finement near the critical regions (i.e. shear, compaction, and dilation bands in sand, clay,
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and rocks) is an efficient tool for the strain localization problems (cf. Ortiz andQuigley IV

[286], Verfürth [287], and Schrefler, Secchi, and Simoni [288]), provided the regularized

material responses are achieved based on a nonlocal model. Here our focus lies on how to

properly perform the mesh refinement on problems involving history dependent materi-

als (cf. Ortiz and Quigley IV [286]). In order to describe the adaptive meshing procedure,

we address the three key components, that is, 1) mesh refinement criteria, 2) transfer of

internal variables (i.e. tensor variables), and 3) reestablish of equilibrium.

The first key issue for an adaptive meshing scheme is the calculation of a suitable

criteria for mesh refinement. This problem is closely related to how to identify the critical

regions or singularities, such as strain localization and fracture, where the accuracy of

finite element approximation is diminished. In this study, the adaptive meshing criterion

is set the configurational force, or equally termed material force. We consider the case of

small strains, the Newton-Eshelby stress (Σ) is defined based upon the effective stress as

[290],

Σ := WI −HT · σ′, (5.21)

whereH(u) = u⊗∇X andW is the strain energy density. The discrete configurational

force is obtained [291, 292] as,

GI =

∫
Be

Σ ·DdV (5.22)

Note that D = ∇Xλa indicates the gradient of the test function. The discrete material

forces are obtained from the existing solutions at the equilibrium state. In other words,

the force calculation can be considered as a post-processing procedure. For adaptive mesh

refinement, we can set the criteria by adopting the absolute value of GI = |GI |, where

| · | indicates L2 norm of a vector.

To properly recover and update the internal variables, next, we compute the spectral

decomposition of the tensor and obtain the logarithms of the rotation and stretch compo-
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nent separately. In other words, we choose an internal variable, for example, the plastic

strain, and construct the rotation tensor using the eigenvectors. The eigenvalues give

rise to the stretch components. For the rotation tensor, we perform the logarithmic map-

ping that leads to a skew-symmetric tensor. The eigenvalues and each component of the

skew-symmetric tensor are then projected onto a new mesh considered as a scalar value.

The interpolated components of the skew-symmetric tensor are projected back to recon-

struct the rotation tensor via the exponential mapping. The projected tensorial internal

variables are then recovered based upon the reestablished eigenvalues and eigenvectors.

The logarithm of a rotation tensor can be computed using the explicit formulas [160,

293]. Firstly, the angle of rotation (θ) is obtained by,

θ := cos−1

[
1

2
(trR− 1)

]
, R ∈ SO(3), θ ∈ [0, π]. (5.23)

Depending on the θ, the logarithm of the rotation is determined as follows,

logR =


0

θ

2 sin θ
(
R−RT)

± πv̌

if θ = 0,

if θ ∈ (0, π),

if θ = 0,

(5.24)

Here v̌ is the skew-symmetric tensor such that v̌·u ≡ v×u ∀u ∈ R3, v is the eigenvector

corresponding to the eigenvalue of 1 ofR, and the sign is selected according to continuity

from the field in the neighborhood. The exponential map can be explicitly expressed

likewise the logarithm [160, 293]. Assuming the W ∈ SO(3), we define the angle of

rotation as follows,

θ :=

(
W : W

2

) 1
2

. (5.25)

The exponential map for the skew-symmetric tensor W then is given by the following
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Figure 5.3: The projection of integration field z into the nodal values of the discrete target
field z̄h in the existing (STEP.I) and refined meshes (STEP.II)

expression,

expW =


I,

I +
sin θ
θ

W +
(1− cos θ)

θ2
W 2,

if θ = 0,

if θ > 0,

(5.26)

The projection of the components, the logarithms of the rotation and stretch compo-

nents, are conducted using L2 projection. As proved in Mota et al. [160], the projection

of internal variables using L2 is derived naturally based upon the variational approach.

Furthermore, the global L2 projection leads to smooth linear field, which is identical to

the linear least squares regression of the nodal values of the original source field [160].

The recovery of target field z̄h by nodal values z̄α, the interpolation functions λα, and the

156



source field z can be expressed by,

z̄h(X) := λα(X)z̄α

z̄h = λα

(∫
B

λαλβIdV

)−1 ∫
B

λβzdV.
(5.27)

For effective computational of the integrals, the interpolation functions λα and λβ are

adopted using the shape functions [160]. Figure 5.3 describes the concept of the projection

procedure. The projection of scalar internal variables, therefore, is straight forward.

Lastly, the reestablishment of equilibrium then completes the adaptive mesh refine-

ment process. Our strategy is to project either elastic or plastic strain tensor based upon

the additive decomposition of the total strain (ϵ = ϵe+ ϵp). As the total strains are recov-

ered by the symmetric gradient of the displacement fields, which are always nodal values,

the projection of plastic strain tensors result in the elastic strain tensors and vice versa.

To sum up, the mesh refinement process can be summarized as follows:

Algorithm 4 Establishment of equilibrium in adaptive meshing process
Require: Numerical simulation is converged to equilibrium at the numerical step n:
1: Compute the magnitude of configurational forces and screening the mesh refinement

criteria (post-processing in the step n)
2: if the criteria is satisfied then

a. refine the mesh for the elements satisfying the criteria
b. project the internal variables
c. interpolate them on to the new mesh
d. construct the system of equations
e. reestablish the equilibrium at the step n

3: else
no refinement process is triggered

4: end if
5: Move on to the next step n+ 1

As an example of numerical simulations, we construct a boundary value problem

which is a vertical cut depicted in Figure 5.4. To lead the strain softening behavior, the ini-

tial over consolidation ratio (OCR) parameter is set to 3.33. This example illustrates that

the results of numerical simulation show consistent behavior under the different mesh
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conditions constructed by the different number of refinement. In other words, we not

only observe the mesh dependence is circumvented, but identify that adaptive meshing

process is performed properly.
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Figure 5.4: Numerical examples (vertical cut) that show the consistent results of the pro-
posed numerical techniques under the different mesh refinement numbers: the same re-
finement criterion (L2-norm of the configurational forces) is used

5.4 Conclusions

In this chapter, we address the potential numerical issues in the coupled multiphysics

problem and the possible solutions to resolve those challenges. Firstly, the spurious oscil-

lations in the liquid pressure and temperature fields are circumvented by the projection

stabilization scheme associated with the weak inf-sup condition for freezing and thawing

porous media at the finite deformation range. We then propose the preconditioner of the

three-field thermo-hydro-mechanical system to enhance the computational efficiency, in

which the performance of iterative solver, Krylov iterations, is improved. On a related is-
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sue, the semi-implicit scheme to couple multi-field problems including damage behavior

is also presented based upon the operator-split strategies. Finally, the nonlocal finite ele-

ment approach associated with adaptive meshing technique is described. Our numerical

methods indicate that the proposed methods are highly applicable to effectively capture

the coupled thermo-hydro-mechanical-chemical behaviors including plasticity and frac-

ture.
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Chapter 6

Closure

6.1 Scope and contribution

This dissertation explores theoretical and computational methods to analyze failure me-

chanics in geological materials associated with the coupled multiphysics processes. We

develop a computational framework that incorporates the complicated physical and chem-

ical mechanisms across different length scales by leveraging the finite element methods

and corresponding constitutive laws.

In order to effectively characterize the materials, our research covers macroscopic and

microscopic points of view that are selectively adopted depending on the application prob-

lems: the frozen soil is conceptualized as an effective medium; the components of rock

salt are considered explicitly (e.g. gains, grain boundaries, brine inclusions, clay contents,

etc.). Those features are materialized via mathematical formulations, where the governing

equations are discretized and simulated based on the finite element counterparts.

In Chapter 2, the contribution on computational modeling of phase-transiting frozen

porous media in macroscopic aspect begins with that, for the first time, we simulate and

capture the thermo-hydro-mechanical responses of freezing and thawing soil in the finite

deformation range. The mixture theory and pre-melting dynamics enable us to derive fi-

nite strain constitutive laws for the path-dependent solid, hydraulic and thermal constitu-

tive responses. This work provides a feasible approach to model frozen porous media with
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unfrozen water constituents and addresses some key theoretical and computational issues

for capturing the essence of the path-dependent thermo-hydro-mechanical responses of

porous media.

A cornerstone for modeling coupled thermo-hydro-mechanical-chemical behavior of

polycrystalline rock salt is presented in Chapter 3. The main contribution is introducing

the crystallographic information into modeling to account for the intrinsic anisotropy

of salt coming from its microstructure. Our numerical framework provides numerical

simulations that show qualitatively compatible physical behaviors of halite, such as rate

dependence, brittle-ductile transition, anisotropic inelasticity and fracture, and thermal

sensitive creep mechanism, by adopting the reduced number of material parameters. This

result indicates the potential applicability of our approach for practical engineering appli-

cations, e.g., field scale problems for a geologic repository of the heat generating nuclear

waste.

Subsequently, Chapter 4 describes a theoretical study for a saturated thermal sensitive

porous medium, in which we investigate the coupled therm-hydro-mechanical effects on

failure mechanism. Based upon the one-dimensional wave propagation setting, we evalu-

ate the material and numerical stability of saturated porous media associated with strain

softening under the non-isothermal condition. Our main contribution is evaluating the

influence of thermal and hydraulic diffusivities on regularization effect and its limitation.

This is analytically investigated by deriving the internal length scale as a function of per-

meability, specific heat, wavenumber, and other material properties

Lastly, in Chapter 5, we propose new remedies to address some major difficulties en-

countered in computational poromechanics problems and our strategies to resolve those

issues. For monolithic mixed finite element method, we remedy the lack of two-fold inf-

sup condition and improves the iterative solution scheme by proposing a preconditioning

strategy for the nonlinear system of equations of the multi-component materials. Besides,

we explore the semi-implicit approach that combines the monolithic and operator-split
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solution strategies associated with multiphysics behavior including damage. The micro-

morphic approach for nonlocal critical state plasticity leveraged by adaptive meshing via

Lie-algebra and configurational force further sheds light on robust computational meth-

ods for coupled multiphysics problems.

6.2 Future Perspective

This research has focused on the development, implementation, and application of a com-

putational framework to investigate demanding challenges for resilient infrastructure sys-

tems associated with coupled multiphysics process. Although the presented numerical

approaches are already capable of reproducing the coupled thermo-hydro-mechanical-

chemical behavior for freezing soil or geological rock salt, there are further topics and

issues that require extended development and consideration.

Regarding the frozen soil, the hysteresis loop of the freezing retention curve is often

observed during the freezing and thawing cycles. This is further related to the growth

of ice lens which can be associated with the existence of air and the void ratio of soil.

The formation and dissipation of the ice lens, furthermore, not only influence the heaving

behavior but also cause damage to the underground and the superstructure. Considering

additional components of the frozen soil system with respect to fracture, dynamic behav-

ior, and the brittle-ductile transition is a very exciting topic and possible extension of the

current study.

For the rock salt, we may categorize the distinct feature of the material as follows:

single crystals, clay contents, brine inclusions, and grain boundaries. While the first

two components have been mainly focused on this thesis, brine inclusions and grain

boundaries are essential components associated with the precipitation creep, dissolution-

precipitation, pressure solution, etc. These characteristics can be also encapsulated by

extending the phase-field method based upon Cahn-Hilliard equation that considers the
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chemical potential functions of the rock salt. The key point lies in how to connect the

chemical reaction, such as grain growth and pressure solution, to the mechanical defor-

mation associated with the plastic or damage behavior. For a comprehensive description

of rock salt, the more sophisticated and fundamental functional are needed.

Besides, combining different features based upon either homogenization theory or

multi-scale approach is an integral part in analyzing geological materials like frozen soil

and rock salt. The behavior of a representative volume element (RVE) with the pro-

posed multiple grains, multiple components, and phase boundaries may be considered

as a sub-scale model for field-scale geomaterials. The data-driven approach and off-line

multiscale technique is a potential tool to be used to link microscopic responses to macro-

scopic scales. This systematic method enables us to have proper multiscale multiphysical

computational models that capture coupled thermo-hydro-mechanical-chemical effects

for fluid-infiltrating partially crystalline geological materials based on its microstructural

information.

Finally, my future research application areas may include (1) modeling multi-physics

processes in soil, rocks, and granular media under extreme climate events, (2) earth re-

source engineering and assessment of hazards caused by natural and/or induced seis-

micity, geologic CO2 sequestration, and nuclear waste storage, (3) dynamics of deep-

geosystems, coastal systems, and off-shore systems for energy production and resilient

infrastructure, (4) analytical, experimental, and numerical study of soil-structure interac-

tions, (5) data analytics and machine learning for geomaterial and geostructure charac-

terizations, and (6) geomechanical simulations with multi-phase groundwater flow and

reactive transport processes.
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