32 research outputs found

    Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs

    No full text
    There is a wide interest in developing management and feeding strategies to stimulate gut development and health in newly-weaned pigs, in order to improve growth performance while minimizing the use of antibiotics and rather expensive feed ingredients, such as milk products. A better understanding of the mechanisms whereby antibiotics influence animal physiology, as well as appropriate use of disease models and in vitro techniques, will lead to the development of alternatives to in-feed antibiotic. Given the considerable advances made in the understanding of intestinal nutrient utilization and metabolism, a complimentary goal in nutrition might be to formulate young pig diets with the specific task of optimizing the growth, function and health of the gut. Important aspects of gut health-promoting pig diets are: reduced content of protein that is fermented in the pigs' gut, minimal buffering capacity, minimal content of anti-nutritional factors, and supply of beneficial compounds such as immunoglobulins. The optimum dietary level and type of fibre will vary with the nature of enteric disease challenges and production objectives. These diet characteristics are influenced by feed ingredient composition and feed processing, including feed fermentation and application of enzymes. A large number of feed additives have been evaluated that are aimed at (1) enhancing the pig's immune response (e.g. immunoglobulin; ω-3 fatty acids, yeast derived ß-glucans), (2) reducing pathogen load in the pig's gut (e.g. organic and inorganic acids, high levels of zinc oxide, essential oils, herbs and spices, some types of prebiotics, bacteriophages, and anti-microbial peptides), (3) stimulate establishment of beneficial gut microbes (probiotics and some types of prebiotics), and (4) stimulate digestive function (e.g. butyric acid, gluconic acid, lactic acid, glutamine, threonine, cysteine, and nucleotides). When manipulating gut microbiota the positive effects of gut health-promoting microbes should be weighed against the increased energy and nutrient costs to support these microbes. In some instances feed additives have been proven effective in vitro but not effective in vivo. The latter applies in particular to essential oils that have strong anti-microbial activity but appear not to be effective in controlling bacterial pathogens when fed to pigs. A combination of different approaches may provide the most effective alternative to in-feed antibiotics

    Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds

    No full text
    Summary: For the last several decades, antimicrobial compounds have been used to promote piglet growth at weaning through the prevention of subclinical and clinical disease. There are, however, increasing concerns in relation to the development of antibiotic-resistant bacterial strains and the potential of these and associated resistance genes to impact on human health. As a consequence, European Union (EU) banned the use of antibiotics as growth promoters in swine and livestock production on 1 January 2006. Furthermore, minerals such as zinc (Zn) and copper (Cu) are not feasible alternatives/replacements to antibiotics because their excretion is a possible threat to the environment. Consequently, there is a need to develop feeding programs to serve as a means for controlling problems associated with the weaning transition without using antimicrobial compounds. This review, therefore, is focused on some of nutritional strategies that are known to improve structure and function of gastrointestinal tract and (or) promote post-weaning growth with special emphasis on probiotics, prebiotics, organic acids, trace minerals and dietary protein source and level

    Dose response of a new phytse on dry matter, calcium, and phosphorus digestibility in weaned piglets

    No full text
    The present study evaluated the dose response of Buttiauxella phytase on apparent total tract digestibility (ATTD) of DM, Ca, and P in weaned pigs at 2 locations. Experimental diets fed to weaned pigs were a positive control (PC), a negative control (NC), and NC supplemented with increasing levels of Buttiauxella phytase. In Trial A, ATTD of P was 57.2% for PC, 32.5% for NC, and 59.4, 62.0, 63.8, 66.0, and 67.3% for 250, 500, 750, 1000, and 2000 phytase units (FTU) added to NC, respectively. In Trial B, ATTD of P was 45.2% for PC, 28.4% for NC, and 58.7, 64.1, 67.9, and 70.9% for 250, 500, 1000, and 2000 FTU added to NC, respectively. In both studies, the reduction in P in the NC diets reduced (P <0.01) ATTD of P when compared with the PC diets. Phytase supplementation linearly and quadratically increased (P <0.01) ATTD of P at all inclusion levels to the NC diet. In conclusion, the average digestible P increase from Buttiauxella phytase (vs. the NC diet) was 1.3, 1.5, 1.6, and 1.7 g digestible P/kg feed for 250, 500, 1000, and 2000 FTU/ kg, respectively

    Modeling the efficiency of phosphorus utilization in growing pigs

    No full text
    Microbial phytase has been used to reduce P excretion from swine to mitigate environmental pollution. The objective of the study was to quantify the effect of feeding a low-P phytase-supplemented diet on growth and P utilization in growing pigs using mathematical models. A total of 20 weaned piglets (BW = 6.5 kg) housed in metabolism cages were randomly assigned to a standard diet (STD) or P-amended diet containing reduced P content and supplemented with phytase (AMN) with 10 pigs/diet. Body weight and feed consumption were recorded weekly so complete growth and cumulative P intake (cPI) curves could be modeled. A function with fixed point of inflexion (Gompertz) and a variable point of inflexion (generalized Michaelis-Menten) were considered in determining bioequivalence by analyzing BW vs. age relationships, whereas the monomolecular function was used to describe BW vs. cPI. All functions were incorporated into a nonlinear mixed effects model, and a first-order autoregressive correlation structure was implemented to take into account repeated measures. There was no difference between the 2 groups in final BW when the Gompertz equation was fitted (176 vs. 178 kg with SE of 7 kg for the STD and AMN, respectively) or the rate parameter (0.0140 vs. 0.0139 with SE of 0.0004 for the STD and AMN, respectively). The generalized Michaelis-Menten equation also showed a similar trend. When BW was expressed as a function of cPI the derivative with respect to cPI represented P efficiency, so it was possible to analyze the expected difference of the 2 diets in using P for BW gain and express it as a continuous function of cPI. The analysis showed through the entire growth period the difference in P efficiency was different from zero. On average, 56 g of supplemented inorganic P was consumed by a pig fed the AMN to reach market weight. In contrast, 309 g of supplemented inorganic P was consumed by the group fed the STD to reach similar BW. It would depend on other factors, but feeding pigs the AMN can result in economic benefit. Pigs fed the AMN excreted 19% less P compared with those fed the STD. In conclusion, nonlinear mixed model analysis (with repeated measures) was suitable for growth and efficiency analysis and showed that pigs fed the AMN consumed less than 20% of the inorganic P and performed as well as those fed the traditional inorganic P supplemented diet. The implications for mitigating P pollution, especially in areas where P loading is already problematic, are substantial
    corecore