37 research outputs found

    Genomic organization and alternative splicing of the human and mouse RPTPρ genes

    Get PDF
    BACKGROUND: Receptor protein tyrosine phosphatase rho (RPTPρ, gene symbol PTPRT) is a member of the type IIB RPTP family. These transmembrane molecules have been linked to signal transduction, cell adhesion and neurite extension. The extracellular segment contains MAM, Ig-like and fibronectin type III domains, and the intracellular segment contains two phosphatase domains. The human RPTPρ gene is located on chromosome 20q12-13.1, and the mouse gene is located on a syntenic region of chromosome 2. RPTPρ expression is restricted to the central nervous system. RESULTS: The cloning of the mouse cDNA, identification of alternatively spliced exons, detection of an 8 kb 3'-UTR, and the genomic organization of human and mouse RPTPρ genes are described. The two genes are comprised of at least 33 exons. Both RPTPρ genes span over 1 Mbp and are the largest RPTP genes characterized. Exons encoding the extracellular segment through the intracellular juxtamembrane 'wedge' region are widely spaced, with introns ranging from 9.7 to 303.7 kb. In contrast, exons encoding the two phosphatase domains are more tightly clustered, with 15 exons spanning ∼ 60 kb, and introns ranging in size from 0.6 kb to 13.1 kb. Phase 0 introns predominate in the intracellular, and phase 1 in the extracellular segment. CONCLUSIONS: We report the first genomic characterization of a RPTP type IIB gene. Alternatively spliced variants may result in different RPTPρ isoforms. Our findings suggest that RPTPρ extracellular and intracellular segments originated as separate modular proteins that fused into a single transmembrane molecule during a later evolutionary period

    Overexpression of leucocyte common antigen (LAR) P-subunit in thyroid carcinomas

    Get PDF
    Protein tyrosine phosphatase (PTPase) dephosphorylation and protein tyrosine kinase (PTKs) phosphorylation of key signal transduction proteins may be regulated by extracellular signals, making PTPases important in the regulation of cell proliferation. Leucocyte common antigen (LAR), a receptor-like PTPase, consists of E-subunit, containing the cell adhesion molecule-like receptor region, and P-subunit specific for a short segment of the extracellular region, the transmembrane peptide, and two cytoplasmic PTPase domains. We produced a monoclonal antibody against the LAR P-subunit for immunohistochemical screening of LAR expression in normal and tumourous tissues. Gliomas and gastric, colorectal, lung, breast and prostate cancers showed weak and relatively infrequent expression. Intense and diffuse expression, however, was detected in 95% (227 out of 239) of thyroid carcinomas, but only 12% (22 out of 128) of adenomas and no cases of benign thyroid disease were immunopositive. In contrast to broad staining in carcinomas, LAR expression in thyroid adenomas was often found in small focal or locally invasive areas. Western blot analysis similarly detected LAR P-subunit protein in thyroid carcinomas, but not in normal tissues. We believe this to be the first demonstration of LAR overexpression in thyroid carcinoma and may help to elucidate the role of PTPases in the development of malignancy

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link

    Protein Tyrosine Phosphatases in the Nematode Ascaris Suum

    No full text
    corecore