4 research outputs found

    Recontamination of Healthcare Surfaces by Repeated Wiping with Biocide-Loaded Wipes: “One Wipe, One Surface, One Direction, Dispose” as Best Practice in the Clinical Environment

    Get PDF
    The wiping of high-touch healthcare surfaces made of metals, ceramics and plastics to remove bacteria is an accepted tool in combatting the transmission of healthcare-associated infections (HCAIs). In practice, surfaces may be repeatedly wiped using a single wipe, and the potential for recontamination may be affected by various factors. Accordingly, we studied how the surface to be wiped, the type of fibre in the wipe and how the presence of liquid biocide affected the degree of recontamination. Experiments were conducted using metal, ceramic and plastic healthcare surfaces, and two different wipe compositions (hygroscopic and hydrophilic), with and without liquid biocide. Despite initially high removal efficiencies of >70% during initial wiping, all healthcare surfaces were recontaminated with E. coli, S. aureus and E. faecalis when wiped more than once using the same wipe. Recontamination occurred regardless of the fibre composition of the wipe or the presence of a liquid biocide. The extent of recontamination by E. coli, S. aureus and E. faecalis bacteria also increased when metal healthcare surfaces possessed a higher microscale roughness (<1 μm), as determined by Atomic Force Microscopy (AFM). The high propensity for healthcare surfaces to be re-contaminated following initial wiping suggests that a “One wipe, One surface, One direction, Dispose” policy should be implemented and rigorously enforced

    Factors affecting Removal of Bacterial Pathogens from Healthcare Surfaces during Dynamic Wiping

    Get PDF
    Wiping of surfaces contaminated with pathogenic bacteria is a key strategy for combatting transmission of healthcare associated infections. It is essential to understand the extent to which removal of bacteria is modulated by fibre properties, biocidal liquid impregnation and applied hand pressure. The influence of intrinsic and extrinsic factors on the removal efficiencies of pathogenic bacteria was studied. Nonwoven wipes made of either hydrophobic (polypropylene) or hygroscopic (lyocell) fibres were manufactured and dynamic removal efficiency of bacteria studied. The single most important parameter affecting bacterial removal efficiency was impregnation with biocidal liquid (p <0.05). For inherently hygroscopic 100% regenerated cellulose (lyocell) wipes impregnated with biocidal liquid, removal of E. coli, S. aureus and E. faecalis improved by increasing the fabric surface density and wiping pressure to their maximal values - 150 g.m-2 and 13.80 kN.m-2 respectively. For inherently hydrophobic 100% polypropylene nonwoven wipes, the same conditions maximised the removal efficiency of S. aureus, but for E. coli and E. faecalis a reduction in the wiping pressure to 4.68 kN.m-2 was required. Best practice involves the use of higher surface density wipes (150 g m-2) containing regenerated cellulose fibres loaded with liquid biocide, and applied with the greatest possible wiping pressure

    Plasma-based treatments of textiles for water repellency

    No full text
    First described by Langmuir in 1928, plasma, considered as the fourth aggregation state of matter, can be described as, ‘a mixture of partially ionised gases where the constituents are achieved by external energy addition’ (Blackburn, 2009). Plasmas are generally classified as hot/thermal and cold/nonthermal depending on the temperature of the plasma zone. A concise account of different technical plasma processes used for material processing can be found in Fig. 9.1

    Efficacy of disinfectant-impregnated wipes used for surface disinfection in hospitals: a review

    No full text
    Background “Ready-to-use” disinfecting wipes (also known as pre-impregnated disinfecting wipe) are broadly used in food industry and domestic situations. Their application in hospitals and healthcare centres for decontamination of medical devices and surfaces is steadily increasing because of their convenient implementation in practice and reliable performance. Beside their acceptable compliance and easy application, literature reported the disinfection failure due to the interaction between textile substrate and active ingredients, which can highly increase the risk of an infection outbreak. This review aims to call attention to the wide range of variables affecting the disinfectant-impregnated wipes’ (DIWs) disinfection performances in hospitals. Methods A systematic literature search based on the five categories i. wipes, ii. disinfectants, iii. application methods, iv. interaction between wipes and active ingredients and v. wiping strategy which can possibly influence the disinfection effectiveness of DIWs was conducted by Google scholar. Studies regarding the efficacy evaluation of DIWs in clinical applications were also reviewed from the National Centre for Biotechnology Information database. Results Variables that impact on the disinfection performance of disinfectant-impregnated wipes in surface disinfection in hospitals were summarised and critically discussed. In addition to the information, current disinfectant-impregnated wipes’ decontamination efficacy test standards were reviewed, and different standards exposed some disadvantage in their testing design. Conclusion Various parameters contribute to the impact of DIWs disinfection performance in practice. The interaction between disinfectant active ingredients and the wiping materials barricades their broad application in hospitals. More studies of the DIWs’ disinfection efficacy in clinical practice are in need. Current standards evaluating the DIWs’ efficacy are required to improve for more realistic condition simulation and differentiating between mechanical removal of inoculum from a surface and chemical inactivation of the test microbe.This work was supported by the Fundacao para a Ciencia e Tecnologia (FCT) [grant number: SFRH/BD/130028/2017]
    corecore