19 research outputs found

    A Research Agenda for Helminth Diseases of Humans: Basic Research and Enabling Technologies to Support Control and Elimination of Helminthiases

    Get PDF
    Successful and sustainable intervention against human helminthiases depends on optimal utilisation of available control measures and development of new tools and strategies, as well as an understanding of the evolutionary implications of prolonged intervention on parasite populations and those of their hosts and vectors. This will depend largely on updated knowledge of relevant and fundamental parasite biology. There is a need, therefore, to exploit and apply new knowledge and techniques in order to make significant and novel gains in combating helminthiases and supporting the sustainability of current and successful mass drug administration (MDA) programmes. Among the fields of basic research that are likely to yield improved control tools, the Disease Reference Group on Helminth Infections (DRG4) has identified four broad areas that stand out as central to the development of the next generation of helminth control measures: 1) parasite genetics, genomics, and functional genomics; 2) parasite immunology; 3) (vertebrate) host–parasite interactions and immunopathology; and 4) (invertebrate) host–parasite interactions and transmission biology. The DRG4 was established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR). The Group was given the mandate to undertake a comprehensive review of recent advances in helminthiases research in order to identify notable gaps and highlight priority areas. This paper summarises recent advances and discusses challenges in the investigation of the fundamental biology of those helminth parasites under the DRG4 Group's remit according to the identified priorities, and presents a research and development agenda for basic parasite research and enabling technologies that will help support control and elimination efforts against human helminthiases

    Responses in lactose yield, lactose percentage and protein-to-protein-plus-lactose ratio from index selection in New Zealand dairy cattle

    Get PDF
    peer-reviewedThe breeding goal of the New Zealand dairy industry is to improve the genetic capability of cows to convert pasture-based feed into farmer profit. The New Zealand dairy industry exports over 95% of milk produced and the most significant product by export volume is whole milk powder (WMP). The current selection objective, breeding worth (BW), will increase yields of protein and fat, potentially shifting milk composition further from the ideal composition for making WMP. This study aimed to investigate the correlated responses in lactose yield (LY), lactose percentage (LP) and protein-to-protein-plus-lactose ratio (P:P + L) from selection for BW, BW plus LY, BW plus LP and BW plus P:P + L. Selection for BW is predicted to have per-cow responses of 54.92 kg milk/year, 2.22 kg fat/year, 1.78 kg protein/year and 2.84 kg lactose/year. When lactose was included in the selection objective in the form of LY, LP or P:P + L, genetic responses ranged from −59.98 kg to 61.08 kg milk/year and from −2.67 kg to 3.70 kg lactose/year. The industry could reduce imported lactose requirements per tonne of WMP by 6%–11% by including lactose into the selection objective, compared with selection on BW alone
    corecore