44 research outputs found

    Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The entomopathogenic fungi <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores for the control of anopheline larvae, and also improve their persistence under field conditions.</p> <p>Methods</p> <p>Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya.</p> <p>Results</p> <p>When formulated in a synthetic oil (ShellSol T), fungal spores of both <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of <it>An. gambiae </it>was significantly reduced by 39 - 50% by the ShellSol T-formulated <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>spores as compared to the effects of the application of unformulated spores.</p> <p>Conclusions</p> <p>ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae.</p

    Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana

    Get PDF
    The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection

    Get PDF
    Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact

    Environment-host-parasite interactions in mass-reared insects

    Get PDF
    The mass production of insects is rapidly expanding globally, supporting multiple industrial needs. However, parasite infections in insect mass-production systems can lower productivity and can lead to devastating losses. High rearing densities and artificial environmental conditions in mass-rearing facilities affect the insect hosts as well as their parasites. Environmental conditions such as temperature, gases, light, vibration, and ionizing radiation can affect productivity in insect mass-production facilities by altering insect development and susceptibility to parasites. This review explores the recent literature on environment–host–parasite interactions with a specific focus on mass-reared insect species. Understanding these complex interactions offers opportunities to optimise environmental conditions for the prevention of infectious diseases in mass-reared insects

    Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential

    No full text
    © 2016, International Organization for Biological Control (IOBC).In the last decade there has been increased focus on the potential of endophytic Beauveria bassiana for the biocontrol of insect herbivores. Generally, detection of endophytes is acknowledged to be problematic and recovery method-dependent. Herein, we critically analyse the methodology reported for the detection of B. bassiana as endophytes following experimental inoculation. In light of the methodology, we further review the effects of endophytic B. bassiana on insect herbivores. Our review indicated the need for stringent protocols for surface sterilisation including thorough experimental controls. For molecular detection protocols by PCR, residual DNA from surface inocula must also be considered. The biocontrol potential of B. bassiana endophytes appears promising although both negative and neutral effects on insect herbivores were reported and there remains ambiguity with respect to the location and mode of action of the fungus in planta. We recommend that future studies adopt multiple techniques, including culture dependent and independent techniques for endophyte detection and elucidate the mechanisms involved against insect herbivores

    Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives.

    Get PDF
    As an effective generalist predator of aphids and other hemipteran pests H. axyridis has been a successful biological control agent. However, the very functional traits that have contributed to its success in this regard also implicate it as an intraguild predator that poses a significant risk not only to the diversity of other natural enemies of Hemiptera (and their associated ecosystem services), but to biodiversity more widely. In this paper we will specifically review the existing data on intraguild predation involving H. axyridis, and consider the strength and symmetry of such interactions both within its native guild and within exotic guilds where it has established as an invasive alien. We will use these studies to interpret the observed population declines in predator diversity in the field, predict species at risk in regions not yet invaded and consider implications for resulting ecosystem services. We will also indicate gaps in our knowledge that require further study in order to identify opportunities for mitigation
    corecore