3,806 research outputs found

    Scanning electrochemical cell microscopy : a versatile technique for nanoscale electrochemistry and functional imaging

    Get PDF
    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, confined between the probe and the surface, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science

    On the solvability of degenerate stochastic partial differential equations in Sobolev spaces

    Get PDF
    Systems of parabolic, possibly degenerate parabolic SPDEs are considered. Existence and uniqueness are established in Sobolev spaces. Similar results are obtained for a class of equations generalizing the deterministic first order symmetric hyperbolic systems.Comment: 26 page

    Supersymmetric Electromagnetic Waves on Giants and Dual-Giants

    Full text link
    We set up the BPS equations for a D3-brane moving in AdS_5 \times S^5 which preserves two supercharges and with all bosonic fields turned on in the world-volume theory. By solving these, we find generalizations of Mikhailov giants and wobbling dual-giants that include electromagnetic waves propagating on their world-volume. For these giants (dual-giants) we show that the BPS field strength is the real part of the pull-back of a holomorphic 2-form in the ambient space C^3 (C^{1,2}) onto the world-volume.Comment: 18 page

    High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles

    Get PDF
    High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g−1. The magnetisation value of the core/shell nanoparticles remains 93 emu g−1 after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11

    Finite Difference Schemes for Stochastic Partial Differential Equations in Sobolev Spaces

    Get PDF
    We discuss LpL_p-estimates for finite difference schemes approximating parabolic, possibly degenerate, SPDEs, with initial conditions from WpmW^m_p and free terms taking values in Wpm.W^m_p. Consequences of these estimates include an asymptotic expansion of the error, allowing the acceleration of the approximation by Richardson's method.Comment: 22 pages. The final publication is available at Springer via http://dx.doi.org/10.1007/s00245-014-9272-

    Current Issues in Carcinogenesis

    Get PDF
    The review presents current data on the major pathogenetic mechanisms underlying uncontrolled growth and dissemination of tumor and its resistance to conventional treatment. Cell genetic instability associated with accumulation of mutations in genes controlling cell growth and differentiation is a key factor in tumor proliferation. Due understanding and detailed analysis of carcinogenesis processes provide the basis for creation of new anticancer drugs which in turn enables optimization and individualization of cancer treatment

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Quantum Gates and Memory using Microwave Dressed States

    Full text link
    Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized quantum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.Comment: 9 pages, 4 figure
    corecore