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ON THE SOLVABILITY OF DEGENERATE STOCHASTIC

PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV

SPACES

MÁTÉ GERENCSÉR, ISTVÁN GYÖNGY, AND NICOLAI KRYLOV

Abstract. Systems of parabolic, possibly degenerate parabolic SPDEs
are considered. Existence and uniqueness are established in Sobolev
spaces. Similar results are obtained for a class of equations generalizing
the deterministic first order symmetric hyperbolic systems.

1. introduction

In this paper we are interested in the solvability in Lp spaces of linear
stochastic parabolic, possibly degenerate, PDEs and of systems of linear
stochastic parabolic PDEs. The equations we consider are important in
applications. They arise in nonlinear filtering of partially observable sto-
chastic processes, in modelling of hydromagnetic dynamo evolving in fluids
with random velocities, and in many other areas of physics and engineering.

Among several important results, an L2-theory of degenerate linear el-
liptic and parabolic PDEs is presented in [25], [26], [27] and [28]. The
solvability in L2 spaces of linear degenerate stochastic PDEs of parabolic
type was first studied in [20] (see also [29]).

Solving equations in Wm
p spaces for sufficiently high exponent p allows

one to prove by Sobolev embedding better smoothness properties of the so-
lutions than in the case of solving them in Wm

2 spaces. As it is mentioned
above, the class of stochastic PDEs considered in this paper includes the
equations of nonlinear filtering of partially observed diffusion processes. By
our results one obtains the existence of the conditional density of the un-
observed process, and its regularity properties, under minimal smoothness
conditions on the coefficients.

The first existence and uniqueness theorem on solvability of these equa-
tions in Wm

p spaces, when they may also degenerate, is presented in [22].
This result is improved in [8].

In the present paper we fill in a gap in the proof of the existence and
uniqueness theorems in [22] and [8]. Moreover, we essentially improve these
theorems. In [22] the existence and uniqueness theorem for Wm

p -valued
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2 M. GERENCSÉR, I. GYÖNGY, AND N.V. KRYLOV

solutions is not separated from an existence and uniqueness theorem for
Wm

2 -valued solutions. In particular, it contains also conditions ensuring
the existence and uniqueness of a Wm

2 solution. In [8] these conditions
were removed, and for any q ∈ (0, p] an estimate for E supt≤T |u|

q
Wm

p
for the

solution u is obtained. In the present paper we remove the extra conditions of
the existence and uniqueness theorem in [22], remove the restriction q ≤ p on
the exponent q in the corresponding theorem in [8], and prove the uniqueness
of the solution under weaker assumptions than those in [22] and [8] (see
Theorem 2.1 below). Note that to have q-th moment estimates for any
high q is useful, for example, in proving almost sure rate of convergence
of numerical approximations of stochastic PDEs, see, e.g., [5]. Moreover,
we not only improve the existence an uniqueness theorems in [22] and [8],
but our main result, Theorem 3.1, extends them to degenerate stochastic
parabolic systems. We present also an existence and uniqueness theorem,
Theorem 3.2, on solvability in Wm

2 spaces for a larger class of stochastic
parabolic systems, which, in particular, contains the first order symmetric
hyperbolic systems. This result was indicated in [9].

We would like to emphasise that the equations we consider in this paper
may degenerate and become first order equations. For non degenerate sto-
chastic PDEs Lp- and Lq(Lp)-theories are developed, see e.g. [17], [18], [13],
[14] and [15], which give essentially stronger results on smoothness of the
solutions.

There are many publications on stochastic PDEs driven by martingale
measures, pioneered by [30]. (See also [2] and the references therein.) In [3]
two set-ups for stochastic PDEs, concerning the driving noise are compared:
a set-up when the driving noise is a martingale measure, and an other set-
up when the equations are driven by martingales with values in infinite
dimensional spaces. It is shown, in particular, that stochastic integrals with
respect to martingale measures can be rewritten as stochastic Itô integrals
with respect to martingales taking values in Hilbert spaces. Earlier this
was proved in [6] in order to treat SDEs and stochastic PDEs driven by
martingale measures as stochastic equations driven by martingales. In [16]
super-Brownian motions in any dimension are constructed as solutions of
SPDEs driven by infinite dimensional martingales, more precisely, by an
infinite sequence of independent Wiener processes. As it is well-known, in
the one-dimensional case the stochastic equation for the super-Brownian
motion can be written as a stochastic PDE driven by a martingale measure,
more precisely, by a space-time white noise, but as it is noted in [16], most
likely this is not possible in higher dimensions.

Solvability of stochastic PDEs of parabolic type are often investigated
in the sense of the mild solution concept, i.e., when solutions to stochastic
PDEs are defined as solutions to a stochastic integral equation obtained via
Duhamel’s principle, called also variation of constant formula in the context
of ODEs (see, e.g., [2] and [3]). For the theory of stochastic PDEs built on
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this approach, often called semigroup approach, we refer the reader to the
monograph [4]. In this framework there are many results on solvability in
various Banach spaces B, including Wm

p spaces, when the linear operator
in the drift term of the equation is an infinitesimal generator of a contin-
uous semigroup of bounded linear operators acting on B. The equations
investigated in most papers, including [2] and [3], do not have a differential
operator in their diffusion part, unlike the equations studied in this paper.
In the case when the differential operator in the drift term is a time depen-
dent random operator, serious problems arise in adaptation the semigroup
approach. Thus the semigroup approach is not used to investigate the filter-
ing equations of general signal and observation models, which are included
in the class of equations considered in the present paper.

Finally we would like to mention that for some special degenerate stochas-
tic PDEs, for example for the stochastic Euler equations, there are many
results on solvability in the literature. See, for example, [1] and the refer-
ences therein. Concerning the equation in [1] we note that its main term is
non random, and its solution can be given in a sense explicitly.

In conclusion we introduce some notation used throughout the paper.
All random elements will be given on a fixed probability space (Ω,F , P ),
equipped with a filtration (Ft)t≥0 of σ-fields Ft ⊂ F . We suppose that
this probability space carries a sequence of independent Wiener processes
(wr)∞r=1, adapted to the filtration (Ft)t≥0, such that wrt −wrs is independent
of Fs for each r and any 0 ≤ s ≤ t. It is assumed that F0 contains all P -
null subsets of Ω, so that (Ω,F , P ) is a complete probability space and the
σ-fields Ft are complete. By P we denote the predictable σ-field of subsets
of Ω× (0,∞) generated by (Ft)t≥0. For basic notions in stochastic analysis,
like continuous local martingales and their quadratic variation process, we
refer to [12].

For p ∈ [1,∞), the space of measurable mappings f from Rd into a sepa-
rable Hilbert space H, such that

‖f‖Lp =
( ∫

Rd

|f(x)|pH dx
)1/p

<∞,

is denoted by Lp(Rd,H).

Remark 1.1. We did not include the symbol H in the notation of the norm
in Lp(Rd,H). Which H is involved will be absolutely clear from the context.
We do the same in other similar situations.

Often H will be l2, or the space of infinite matrices {gij ∈ R : i =
1, ...,M, j = 1, 2, ...}, or finite M ×M matrices with the Hilbert-Schmidt
norm. The space of functions from Lp(Rd,H), whose generalized derivatives

up to order m are also in Lp(Rd,H), is denoted by Wm
p (Rd,H). By definition
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W 0
p (Rd,H) = Lp(Rd,H). The norm |u|Wm

p
of u in Wm

p (Rd,H) is defined by

|u|pWm
p

=
∑
|α|≤m

|Dαu|pLp
, (1.1)

where Dα := Dα1
1 ...Dαd

d for multi-indices α := (α1, ..., αd) ∈ {0, 1, ...}d of
length |α| := α1 + α2 + ... + αd, and Diu is the generalized derivative of u
with respect to xi for i = 1, 2..., d. We also use the notation Dij = DiDj

and Du = (D1u, ...,Ddu). When we talk about “derivatives up to order m”
of a function for some nonnegative integer m, then we always include the
zeroth-order derivative, i.e. the function itself. Unless otherwise indicated,
the summation convention with respect to repeated integer valued indices is
used throughout the paper.

2. formulation

In this section H = R and we use a shorter notation

Lp = Lp(Rd,R), Wm
p = Wm

p (Rd,R), Wm+1
p (l2) = Wm+1

p (Rd, l2).

Fix a T ∈ (0,∞) and consider the problem

dut(x) = (Ltut(x) + ft(x)) dt+ (M r
t ut(x) + grt (x)) dwrt , (2.1)

(t, x) ∈ HT := [0, T ]× Rd, with initial condition

u0(x) = ψ(x), x ∈ Rd, (2.2)

where

Lt = aijt (x)Dij + bit(x)Di + ct(x), M r
t = σirt (x)Di + νrt (x),

and all functions, given on Ω×HT , are assumed to be real valued and satisfy
the following assumptions in which m ≥ 0 is an integer and K is a constant.

Assumption 2.1. The derivatives in x ∈ Rd of aij up to order max(m, 2)
and of bi and c up to order m are P⊗B(Rd)-measurable functions, bounded
by K for all i, j ∈ {1, 2, ..., d}. The functions σi = (σir)∞r=1 and ν = (νr)∞r=1

are l2-valued and their derivatives in x up to order m + 1 are P ⊗ B(Rd)-
measurable l2-valued functions, bounded by K.

Assumption 2.2. The free data, ft and gt = (gr)∞r=1 are predictable pro-
cesses with values in Wm

p and Wm+1
p (l2), respectively, such that almost

surely

Kpm,p(T ) =

∫ T

0

(
|ft|pWm

p
+ |gt|pWm+1

p

)
dt <∞. (2.3)

The initial value, ψ is an F0-measurable random variable with values in Wm
p .

Assumption 2.3. For P ⊗ dt⊗ dx-almost all (ω, t, x) ∈ Ω× [0, T ]× Rd

αijt (x)zizj ≥ 0

for all z ∈ Rd, where
αij = 2aij − σirσjr.
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This condition is a standard assumption in the theory of stochastic PDEs.
If it is not satisfied then equation (2.1) may be solvable only for very special
initial conditions and free terms. Notice that this assumption allows α = 0,
which can happen, for example, when σik = (

√
2a)ik for i, k = 1, ..., d and

σik = 0 for k > d.
Let τ be a stopping time bounded by T .

Definition 2.1. A W 1
p -valued function u, defined on the stochastic interval

|(0, τ ]], is called a solution of (2.1)-(2.2) on [0, τ ] if u is predictable on |(0, τ ]],∫ τ

0
|ut|pW 1

p
dt <∞ (a.s.),

and for each ϕ ∈ C∞0 (Rd) for almost all ω ∈ Ω

(ut, ϕ) =(ψ,ϕ) +

∫ t

0
{−(aijs Dius, Djϕ) + (b̄isDius + csus + fs, ϕ)} ds

+

∫ t

0
(σirs Dius + νrsus + grs , ϕ) dwrs

for all t ∈ [0, τ(ω)], where b̄i = bi−Dja
ij , and (· , ·) denotes the inner product

in the Hilbert space of square integrable real-valued functions on Rd.

We want to prove the following existence and uniqueness theorem about
the Cauchy problem (2.1)-(2.2).

Theorem 2.1. Let Assumption 2.3 and Assumptions 2.1-2.2 with m ≥ 0
hold. Then there exists at most one solution on [0, T ]. If together with
Assumption 2.3, Assumptions 2.1-2.2 hold with m ≥ 1, then there exists a
unique solution u = (ut)t∈[0,T ] on [0, T ]. Moreover, u is a Wm

p -valued weakly

continuous process, it is a strongly continuous process with values in Wm−1
p ,

and for every q > 0 and n ∈ {0, 1, ...,m}

E sup
t∈[0,T ]

|ut|qWn
p
≤ N(E|ψ|qWn

p
+ EKqn(T )), (2.4)

where N is a constant depending only on K, T , d, m, p and q.

This result is proved in [22] in the case q = p ≥ 2 under the additional
assumptions that EKrm,r(T ) < ∞ and E|ψ|rWm

r
< ∞ for r = p and r = 2

(see Theorem 3.1 therein). These additional assumptions are not supposed
and a somewhat weaker version of the above theorem is obtained in [8] when
q ∈ (0, p]. The proof of it in [8] uses Theorem 3.1 from [22], whose proof
is based on an estimate for the derivatives of the solution u, formulated as
Lemma 2.1 in [22]. The proof of this lemma, however, contains a gap. Our
aim is to fill in this gap and also to improve the existence and uniqueness
theorems from [22] and [8]. Since Du = (D1u, ...,Ddu) satisfies a system
of SPDEs, it is natural to present and prove our results in the context of
systems of stochastic PDEs.



6 M. GERENCSÉR, I. GYÖNGY, AND N.V. KRYLOV

3. Systems of stochastic PDEs

Let M ≥ 1 be an integer, and let 〈· , ·〉 and 〈·〉 denote the scalar product
and the norm in RM , respectively. By TM we denote the set of M ×M
matrices, which we consider as a Euclidean space RM2

. For an integer m ≥ 1
we define l2(Rm) as the space of sequences ν = (ν1, ν2, ...) with νk ∈ Rm,
k ≥ 1, and finite norm

‖ν‖l2 =
( ∞∑
k=1

|ν|2Rm

)1/2
(cf. Remark 1.1).

We look for RM -valued functions ut(x) = (u1
t (x), ..., uMt (x)), of ω ∈ Ω,

t ∈ [0, T ] and x ∈ Rd, which satisfy the system of equations

dut =[aijt Dijut + bitDiut + cut + ft] dt

+ [σikt Diut + νkt ut + gkt ] dwkt , (3.1)

and the initial condition
u0 = ψ, (3.2)

where at = (aijt (x)) takes values in the set of d× d symmetric matrices,

σit = (σikt (x), k ≥ 1) ∈ l2, bit(x) ∈ TM , ct(x) ∈ TM ,

νt(x) ∈ l2(TM ), ft(x) ∈ RM , gt(x) ∈ l2(RM ) (3.3)

for i = 1, ..., d, for all ω ∈ Ω, t ≥ 0, x ∈ Rd.
Note that with the exception of aij and σik, all ‘coefficients’ in equation

(3.1) mix the coordinates of the process u.
Let m be a nonnegative integer, p ∈ [2,∞) and make the following as-

sumptions, which are straightforward adaptations of Assumptions 2.1 and
2.2.

Assumption 3.1. The derivatives in x ∈ Rd of aij up to order max(m, 2)
and of bi and c up to order m are P ⊗ B(Rd)-measurable functions, in
magnitude bounded by K for all i, j ∈ {1, 2, ..., d}. The derivatives in x
of the l2-valued functions σi = (σik)∞k=1 and the l2(TM )-valued function ν

up to order m + 1 are P ⊗ B(Rd)-measurable l2-valued and l2(TM )-valued
functions, respectively, in magnitude bounded by K.

Assumption 3.2. The free data, (ft)t∈[0,T ] and (gt)t∈[0,T ] are predictable
processes with values in

Wm
p (Rd,RM ) and Wm+1

p (Rd, l2(RM )),

respectively, such that almost surely

Kpm,p(T ) =

∫ T

0

(
|ft|pWm

p
+ |gt|pWm+1

p

)
dt <∞. (3.4)

The initial value, ψ is an F0-measurable random variable with values in
Wm
p (Rd,RM ).
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Set

βi = bi − σirνr, i = 1, 2, ..., d,

and recall that αij = 2aij − σikσjk for i, j = 1, ..., d. Instead of Assump-
tion 2.3 we impose now the following condition, where δkl stands for the
‘Kronecker δ’, i.e., δkl = 1 if k = l and it is zero otherwise.

Assumption 3.3. There exist a constantK0 > 0 and a P×B(Rd)-measurable
Rd-valued bounded function h = (hit(x)), whose first order derivatives in x
are bounded functions, such that for all ω ∈ Ω, t ≥ 0 and x ∈ Rd

|h|+ |Dh| ≤ K, (3.5)

and for all (λ1, ..., λd) ∈ Rd

|
d∑
i=1

(βikl − δklhi)λi|2 ≤ K0

d∑
i,j=1

αijλiλj for k, l = 1, ...,M . (3.6)

Remark 3.1. Let Assumption 3.1 hold with m = 0 and the first order deriva-
tives of bi in x are bounded by K for each i = 1, 2, ...d. Then notice that
condition (3.6) is a natural extension of Assumption 2.3 to systems of sto-
chastic PDEs. Indeed, when M = 1 then taking hi = βi for i = 1, ..., d, we
can see that Assumption 3.3 is equivalent to α ≥ 0. Let us analyse now As-
sumption 3.3 for arbitrary M ≥ 1. Notice that it holds when α is uniformly
elliptic, i.e., α ≥ κId with a constant κ > 0 for all ω, t ≥ 0 and x ∈ Rd.
Indeed, due to Assumption 3.1 there is a constant N = N(K, d) such that

|
d∑
i=1

(βikl − δklhi)λi|2 ≤ N
d∑
i=1

|λi|2 for every k, l = 1, 2, ...,M,

which together with the uniform ellipticity of α clearly implies (3.6). Notice
also that (3.6) holds in many situations when instead of the strong ellipticity
of α we only have α ≥ 0. Such examples arise, for example, when aij =
(σirσjr)/2 for all i, j = 1, ..., d, and b and ν are such that βi is a diagonal
matrix for each i = 1, ..., d, and the diagonal elements together with their
first order derivatives in x are bounded by a constant K. As a simple
example, consider the system of equations

dut(x) ={1
2D

2ut(x) +Dvt(x)} dt+ {Dut(x) + vt(x)} dwt
dvt(x) ={1

2D
2vt(x)−Dut(x)} dt+ {Dvt(x)− ut(x)} dwt

for t ∈ [0, T ], x ∈ R, for a 2-dimensional process (ut(x), vt(x)), where w is a
one-dimensional Wiener process. In this example α = 0 and β = 0. Thus
clearly, condition (3.6) is satisfied.

In section 5 it will be convenient to use condition (3.6) in an equivalent
form, which we discuss in the next remark.
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Remark 3.2. Notice that condition (3.6) in Assumption 3.3 can be reformu-
lated as follows: There exists a constant K0 such that for all values of the
arguments and all continuously differentiable RM -valued functions u = u(x)
on Rd we have

〈u, biDiu〉 − σik〈u, νkDiu〉 ≤ K0

∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉+ hi〈Diu, u〉.

(3.7)

Indeed, set β̂i = βi − hiIM , where IM is the M ×M unit matrix, and
observe that (3.7) means

〈u, β̂iDiu〉 ≤ K0

∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉.

By considering this relation at a fixed point x and noting that then one can
choose u and Du independently, we conclude that

〈
∑
i

β̂iDiu〉2 ≤ K2
0α

ij〈Diu,Dju〉 (3.8)

and (3.6) follows (with a different K0) if we take Diu
k = λiδ

kl.
On the other hand, (3.6) means that for any l without summation on l∣∣∑

i

β̂iklDiu
l
∣∣2 ≤ K0α

ij(Diu
l)Dju

l.

But then by Cauchy’s inequality similar estimate holds after summation on
l is done and carried inside the square on the left-hand side. This yields
(3.8) (with a different constant K0) and then leads to (3.7).

The notion of solution to (3.1)-(3.2) is a straightforward adaptation of
Definition 2.1 to systems of equations. Namely, u = (u1, ..., uM ) is a solution
on [0, τ ], for a stopping time τ ≤ T , if it is a W 1

p (Rd,RM )-valued predictable
function on |(0, τ ]], ∫ τ

0
|ut|pW 1

p
dt <∞ (a.s.),

and for each RM -valued ϕ = (ϕ1, ..., ϕM ) from C0(Rd) with probability one

(ut, ϕ) =(ψ,ϕ) +

∫ t

0
{−(aijs Dius, Djϕ)

+ (b̄isDius + csus + fs, ϕ)} ds (3.9)

+

∫ t

0
(σirs Dius + νrsus + gr(s), ϕ) dwrs (3.10)

for all t ∈ [0, τ ], where b̄i = bi−Dja
ijIM . Here, and later on (Ψ,Φ) denotes

the inner product in the L2-space of RM -valued functions Ψ and Φ defined
on Rd.

The main result of the paper reads now just like Theorem 2.1 above.
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Theorem 3.1. Let Assumption 3.3 hold. If Assumptions 3.1 and 3.2 also
hold with m ≥ 0, then there is at most one solution to (3.1)-(3.2) on [0, T ].
If together with Assumption 3.3, Assumptions 3.1 and 3.2 hold with m ≥ 1,
then there is a unique solution u = (ul)Ml=1 to (3.1)-(3.2) on [0, T ]. More-

over, u is a weakly continuous Wm
p (Rd,RM )-valued process, it is strongly

continuous as a Wm−1
p (Rd,RM )-valued process, and for every q > 0 and

n ∈ {0, 1, ...,m}
E sup
t∈[0,T ]

|ut|qWn
p
≤ N(E|ψ|qWn

p
+ EKqn,p(T )) (3.11)

with N = N(m, p, q, d,M,K, T ).

Example 3.1. In hydromagnetic dynamo theory the system of equations

∂

∂t
Bk
t (x) = λt(x)∆Bk

t (x) +Djv
k
t (x)Bj

t (x)− vjt (x)DjB
k
t (x), k = 1, 2, 3,

(3.12)
for t ∈ [0, T ] and x ∈ R3, called induction equation, describes the evolution
of a magnetic field B = (B1, B2, B3) in a fluid flowing with velocity v =
(v1, v2, v3), where λ ≥ 0 is the magnetic diffusivity (see, for example, [23]).
Notice that one can apply Theorem 3.1 to (3.12) to obtain its solvability in
Wm
p spaces. To study effects in turbulent flows, induction equations with

random velocity fields v have been investigated in the literature (see, for
example, [24]). In [7] convergence of (3.12) to a system of stochastic PDEs
is shown when the velocity fields are random and converge to a random field
which is white noise in time. We note that Theorem 3.1 can be applied also
to the system of stochastic PDEs obtained in this way.

In the case p = 2 we present also a modification of Assumption 3.3, in
order to cover an important class of stochastic PDE systems, the hyperbolic
symmetric systems.

Observe that if in (3.6) we replace βikl with βilk, nothing will change.
By the convexity of t2 condition (3.6) then holds if we replace βilk with
(1/2)[βilk + βikl]. Since

|a− b|2 ≤ |a+ b|2 + 2a2 + 2b2

this implies that (3.6) also holds for

β̄ikl = (βikl − βilk)/2
in place of βikl, which is the antisymmetric part of βi = bi − σirνr.

Hence the following condition is weaker than Assumption 3.3.

Assumption 3.4. There exist a constantK0 > 0 and a P×B(Rd)-measurable
RM -valued function h = (hit(x)) such that (3.5) holds, and for all ω ∈ Ω,
t ≥ 0 and x ∈ Rd and for all (λ1, ..., λd) ∈ Rd

|
d∑
i=1

(β̄ikl − δklhi)λi|2 ≤ K0

d∑
i,j=1

αijλiλj for k, l = 1, ...,M . (3.13)
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The following result in the special case of deterministic PDE systems is
indicated and a proof is sketched in [9].

Theorem 3.2. Take p = 2 and replace Assumption 3.3 with Assumption
3.4 in the conditions of Theorem 3.1. Then the conclusion of Theorem 3.1
holds with p = 2.

Remark 3.3. Notice that Assumption 3.4 obviously holds with hi = 0 if the
matrices βi are symmetric and α ≥ 0. When a = 0 and σ = 0 then the
system is called a first order symmetric hyperbolic system.

Remark 3.4. If Assumption 3.4 does not hold then even simple first order
deterministic systems with smooth coefficients may be ill-posed. Consider,
for example, the system

dut(x) =Dvt(x) dt

dvt(x) =−Dut(x) dt (3.14)

for (ut(x), vt(x)), t ∈ [0, T ], x ∈ R, with initial condition u0 = ψ, v0 = φ,
such that ψ, φ ∈ Wm

2 \W
m+1
2 for an integer m ≥ 1. Clearly, this system

does not satisfy Assumption 3.4, and one can show that it does not have a
solution with the initial condition u0 = ψ, v0 = φ. We note, however, that
it is not difficult to show that for any constant ε 6= 0 and Wiener process w
the stochastic PDE system

dut(x) =Dvt(x) dt+ εDvt(x) dwt

dvt(x) =−Dut(x) dt− εDut(x) dwt (3.15)

with initial condition (u0, v0) = (ψ, φ) ∈ Wm
2 (for m ≥ 1) has a unique

solution (ut, vt)t∈[0,T ], which is a Wm
2 -valued continuous process. One can

prove this statement and the statement about the nonexistence of a solution
to (3.14) by using Fourier transform. We leave the details of the proof as
exercises for those readers who find them interesting. Clearly, system (3.15)
does not belong to the class of stochastic systems considered in this paper.

4. Preliminaries

First we discuss the solvability of (3.1)-(3.2) under the strong stochastic
parabolicity condition.

Assumption 4.1. There is a constant κ > 0 such that

αijλiλj ≥ κ
d∑
i=1

|λi|2

for all ω ∈ Ω, t ≥ 0, x ∈ Rd and (λ1, ..., λd) ∈ Rd.
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If the above non-degeneracy assumption holds then we need weaker reg-
ularity conditions on the coefficients and the data than in the degenerate
case. Recall that m ≥ 0 and make the following assumptions.

Assumption 4.2. The derivatives in x ∈ Rd of aij up to order max(m, 1)
and of bi and c up to order m are P⊗B(Rd)-measurable functions, bounded
by K for all i, j ∈ {1, 2, ..., d}. The derivatives in x of the l2-valued functions
σi and l2(TM )-valued function ν up to order m are P ⊗ B(Rd)-measurable
l2-valued and l2(TM )-valued functions, respectively, in magnitude bounded
by K.

Assumption 4.3. The free data, (ft)t∈[0,T ] and (gt)t∈[0,T ] are predictable

processes with values in Wm−1
2 (Rd,RM ) and Wm

2 (Rd, l2(TM )), respectively,
such that almost surely

K2
m−1,2(T ) =

∫ T

0

(
|ft|2Wm−1

2
+ |gt|2Wm

2

)
dt <∞.

The initial value, ψ is an F0-measurable random variable with values in
Wm

2 (Rd,RM ).

The following is a standard result from the L2-theory of stochastic PDEs.
See, for example, [29]. Further results on solvability in W 1

2 spaces for non
degenerate systems of stochastic PDEs in Rd and in domains of Rd can be
found in [15].

Theorem 4.1. Let Assumptions 4.1, 4.2 and 4.3 hold with m ≥ 0. Then
(3.1)-(3.2) has a unique solution u. Moreover, u is a continuous Wm

2 (Rd,RM )-
valued process such that ut ∈Wm+1(Rd,RM ) for P × dt everywhere, and

E sup
t∈[0,T ]

|ut|2Wm
2

+ E

∫ T

0
|ut|2Wm+1

2
dt

≤ N(E|ψ|2Wm
2

+ E

∫ T

0
(|ft|2Wm−1

2
+ |gt|2Wm

2
) dt) (4.1)

with N = N(κ,m, d,M,K, T ).

The crucial step in the proof of Theorem 2.1 is to obtain an apriori es-
timate, like estimate (2.4). In order to discuss the way how such estimate
can be proved, take q = p, M = 1, and for simplicity assume that (aij)
is nonnegative definite, it is bounded and has bounded derivatives up to a
sufficiently high order, and that all the other coefficients and free terms in
equation (2.1) are equal to zero. Thus we consider now the PDE

du(t, x) = aij(t, x)Diju(t, x) dt, t ∈ [0, T ], x ∈ Rd, (4.2)

with initial condition (2.2), where we assume that ψ is a smooth function
from W 1

p . We want to obtain the estimate

|u(t)|p
W 1

p
≤ N |ψ|p

W 1
p

(4.3)
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for smooth solutions u to (4.2)-(2.2).
After applying Dk to both sides of equation (4.2) and writing vk in place

of Dkv, by the chain rule we have

d
∑
k

|uk|p = p|uk|p−1uk(a
ij
k uij + aijuijk) dt.

Integrating over Rd we get

d
∑
k

|uk|pLp
=

∫
Rd

Q(u) dx dt,

where

Q(u) = p|uk|p−2uk(a
ijuijk + aijk uij).

To obtain (4.3) we want to have the estimate∫
Rd

Q(v) dx ≤ N ||v||p
W 1

p
(4.4)

for any smooth v with compact support. To prove this we write ξ ∼ η if ξ
and η have identical integrals over Rd and we write ξ � η if ξ ∼ η + ζ such
that

ζ ≤ N(|v|p + |Dv|p).
Then by integration by parts we have

|vk|p−2vka
ijvijk ∼− (p− 1)|vk|p−2aijvkivkj − |vk|p−2vka

ij
i vjk

∼− (p− 1)|vk|p−2aijvkivkj − p−1Dj |vk|paiji
�− (p− 1)|vk|p−2aijvkivkj .

By the simple inequality αβ ≤ ε−1α2 + εβ2 we have

|vk|p−2vka
ij
k vij ≤ ε

−1|vk|p + ε|vk|p−2|aijk vij |
2

for any ε > 0. To estimate the term |aijk vij |
2 we use the following lemma,

which is well-known from [28].

Lemma 4.2. Let a = (aij(x)) be a function defined on Rd, with values in
the set of non-negative m ×m matrices, such that a and its derivatives in
x up second order are bounded in magnitude by a constant K. Let V be a
symmetric m×m matrix. Then

|DaijV ij |2 ≤ NaijV ikV jk

for every x ∈ Rd, where N is a constant depending only on K and d.

By this lemma |aijk vij |
2 ≤ Naijvilvjl. Hence

|vk|p−2vka
ij
k vij � Nε|vk|

p−2aijvilvjl.

Thus for each fixed k = 1, 2, ..., d we have

Q(v) � −p(p− 1)|vk|p−2aijvkivkj + ε|vk|p−2aijvilvjl (4.5)
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for any ε > 0. Notice that for each fixed k there is a summation with respect
to l over {1, 2, ..., d} in the expression ε|vk|p−2aijvilvjl, and terms with l 6= k
cannot be killed by the expression

−p(p− 1)|vk|p−2aijvkivkj . (4.6)

Hence we can get (4.4) when d = 1 or p = 2, but we does not get it for
p > 2 and d > 1. To cancel every term in the sum ε|vk|p−2aijvilvjl we need
an expression like

−ν|vk|p−2aijvlivlj ,

with a constant ν, in place of (4.6), for each k ∈ {1, .., d} in the right-hand

side of (4.5). This suggests to get (4.3) via an equation for | |Du|2|p/2Lp/2

instead of that for
∑

k |Dku|pLp
.

Let us test this idea. From

duk = (aijuijk + aijk uij) dt

by the chain rule and Lemma 4.2 we have

d|Du|2 = 2uka
ijuijk dt+ 2uka

ij
k uij dt ≤ a

ij [|Du|2]ij dt− 2aijuikujk dt

+N |Du|[aijuikujk]1/2 dt ≤ aij [|Du|2]ij dt+N |Du|2 dt
with a constant N . Hence

d(|Du|2)p/2 ≤ (p/2)|Du|p−2aij [|Du|2]ij dt+N |Du|p dt,

where

|Du|p−2aij [|Du|2]ij ∼− |Du|p−2aijj [|Du|2]i

− ((p− 2)/2)|Du|p−4aij [|Du|2]i[|Du|2]j

≤− (2/p)aijj [|Du|p]i � N |Du|p, (4.7)

which implies

| |Du|2|p/2Lp/2
≤ N | |Dψ|2|p/2Lp/2

,

by Gronwall’s lemma. Consequently, estimate (4.3) follows, since it is not
difficult to see that

|u(t)|pLp
≤ N |ψ|pLp

holds. The careful reader may notice that though the computations in (4.7)
are justified only for p ≥ 4, by approximating the function |t|p−2, t ∈ Rd
by smooth functions we can extend them to get the desired estimate for all
p ≥ 2.

The following lemma on Itô’s formula in the special case M = 1 is The-
orem 2.1 from [19]. The proof of this multidimensional variant goes the
same way, and therefore will be omitted. Note that for p ≥ 2 the second
derivative, Dij〈x〉p of the function (x1, x2, . . . , xM )→ 〈x〉p for p ≥ 2 is

p(p− 2)〈x〉p−4xixj + p〈x〉p−2δij ,
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which makes the last term in (4.8) below natural. Here and later on we use
the convention 0 · 0−1 := 0 whenever such terms occur.

Lemma 4.3. Let p ≥ 2 and let ψ = (ψk)Mk=1 be an Lp(Rd,RM )-valued F0-

measurable random variable. For i = 0, 1, 2, ..., d and k = 1, ...,M let fki

and (gkr)∞r=1 be predictable functions on Ω× (0, T ], with values in Lp and in
Lp(l2), respectively, such that∫ T

0

(∑
i,k

|fkit |
p
Lp

+
∑
k

|gk·t |
p
Lp

)
dt <∞ (a.s.).

Suppose that for each k = 1, ...,M we are given a W 1
p -valued predictable

function uk on Ω× (0, T ] such that∫ T

0
|ukt |

p
W 1

p
dt <∞ (a.s.),

and for any φ ∈ C∞0 with probability 1 for all t ∈ [0, T ] we have

(ukt , φ) = (ψk, φ) +

∫ t

0
(gkrs , φ) dwrs +

∫ t

0
((fk0

s , φ)− (fkis , Diφ)) ds.

Then there exists a set Ω′ ⊂ Ω of full probability such that

u = 1Ω′(u
1, ..., uk)t∈[0,T ]

is a continuous Lp(Rd,RM )-valued process, and for all t ∈ [0, T ]∫
Rd

〈ut〉p dx =

∫
Rd

〈ψ〉p dx+

∫ t

0

∫
Rd

p〈us〉p−2〈us, grs〉 dx dwrs

+

∫ t

0

∫
Rd

(
p〈us〉p−2〈us, f0

s 〉 − p〈us〉p−2〈Dius, f
i
s〉

−(1/2)p(p− 2)〈us〉p−4〈us, f is〉Di〈us〉2

+
∑
r

[
(1/2)p(p− 2)〈us〉p−4〈us, grs〉2 + (1/2)p〈us〉p−2〈grs〉2

])
dx ds, (4.8)

where f i := (fki)Mk=1 and gr := (gkr)Mk=1 for all i = 0, 1, ..., d and r = 1, 2, ....

5. The main estimate

Here we consider the problem (3.1)-(3.2) with at = (aijt (x)) taking values
in the set of nonnegative symmetric d×d matrices and the other coefficients
and the data are described in (3.3). The following lemma presents the crucial
estimate to prove solvability in Lp spaces. It generalises the estimate for Du
explained in section 4 for a solution u to a simple PDE.

Lemma 5.1. Suppose that Assumptions 3.1, 3.2, and 3.3 hold with m ≥ 0.
Assume that u = (ut)t∈[0,T ] is a solution of (3.1)-(3.2) on [0, T ] (as defined
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before Theorem 3.1). Then (a.s.) u is a continuous Lp(Rd,RM )-valued
process, and there is a constant N = N(p,K, d,M,K0) such that

d

∫
Rd

〈ut〉p dx+ (p/4)

∫
Rd

〈ut〉p−2αijt 〈Diut, Djut〉 dx dt

≤ p
∫
Rd

〈ut〉p−2〈ut, σikDiut + νkt ut + gkt 〉 dx dwkt

+N

∫
Rd

[
〈ut〉p + 〈ft〉p +

(∑
k

〈gkt 〉2
)p/2

+
(∑

k

〈Dgkt 〉2
)p/2]

dx dt. (5.1)

Proof. By Lemma 4.3 (a.s.) u is a continuous Lp(Rd,RM )-valued process
and

d

∫
Rd

〈ut〉p dx =

∫
Rd

p〈ut〉p−2〈ut, σikDiut + νkt ut + gkt 〉 dx dwkt

+

∫
Rd

(
p〈ut〉p−2〈ut, bitDiut+ctut+ft−Dia

ij
t Djut〉−p〈ut〉p−2〈Diut, a

ij
t Djut〉

−(1/2)p(p− 2)〈ut〉p−4Di〈ut〉2〈ut, aijt Djut〉

+
∑
k

{
(1/2)p(p− 2)〈ut〉p−4〈ut, σikt Diut + νkt ut + gkt 〉2

+(1/2)p〈ut〉p−2〈σikt Diut + νkt ut + gkt 〉2
})

dx dt. (5.2)

Observe that

〈ut〉p−2〈ut, ft〉 ≤ 〈ut〉p + 〈ft〉p, 〈ut〉p−2
∑
k

〈gkt 〉2 ≤ 〈ut〉p +
(∑

k

〈gkt 〉2
)p/2

,

〈ut〉p−2
∑
k

〈νkt ut, gkt 〉 ≤ N〈ut〉p−1
(∑

k

〈gkt 〉2
)1/2 ≤ N〈ut〉p +N

(∑
k

〈gkt 〉2
)p/2

,

〈ut〉p−4
∑
k

〈ut, gkt 〉2 ≤ 〈ut〉p−2
∑
k

〈gkt 〉2 ≤ 〈ut〉p +
(∑

k

〈gkt 〉2
)p/2

,

〈ut〉p−4
∑
k

〈ut, νkt ut〉〈ut, gkt 〉 ≤ N〈ut〉p−1
(∑

k

〈gkt 〉2
)1/2 ≤ 〈ut〉p+(∑

k

〈gkt 〉2
)p/2

,

〈ut〉p−2〈ut, ctut〉 ≤ 〈ut〉p−1〈ctut〉 ≤ |ct|〈ut〉p,
where |c| denotes the (Hilbert-Schmidt) norm of c.

This shows how to estimate a few terms on the right in (5.2). We write
ξ ∼ η if ξ and η have identical integrals over Rd and we write ξ � η if
ξ ∼ η + ζ and the integral of ζ over Rd can be estimated by the coefficient
of dt in the right-hand side of (5.1). For instance, integrating by parts and
using the smoothness of σikt and gkt we get

p〈ut〉p−2〈σikt Diut, g
k
t 〉 � −pσikt (Di〈ut〉p−2)〈ut, gkt 〉 (5.3)

= −p(p− 2)〈ut〉p−4〈ut, σikt Diut〉〈ut, gkt 〉,
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where the first expression comes from the last occurrence of gkt in (5.2),
and the last one with an opposite sign appears in the evaluation of the first
term behind the summation over k in (5.2). Notice, however, that these
calculations are not justified when p is close to 2, since in this case 〈ut〉p−2

may not be absolutely continuous with respect to xi and it is not clear either
if 0/0 should be defined as 0 when it occurs in the second line. For p = 2 we
clearly have 〈σikt Diut, g

k
t 〉 � 0. For p > 2 we modify the above calculations

by approximating the function 〈t〉p−2, t ∈ RM , by continuously differentiable
functions φn(t) = ϕn(〈t〉2) such that

lim
n→∞

ϕn(r) = |r|(p−2)/2, lim
n→∞

ϕ′n(r) = (p− 2)sign(r)|r|(p−4)/2/2

for all r ∈ R, and

|ϕn(r)| ≤ N |r|(p−2)/2, |ϕ′n(r)| ≤ N |r|(p−4)/2

for all r ∈ R and integers n ≥ 1, where ϕ′n := dϕn/dr and N is a constant
independent of n. Thus instead of (5.3) we have

pϕn(〈ut〉2)〈σikt Diut, g
k
t 〉 � −2pϕ′n(〈ut〉2)〈ut, σikt Diut〉〈ut, gkt 〉, (5.4)

where
|ϕ′n(〈ut〉2)〈ut, σikt Diut〉〈ut, gkt 〉| ≤ N〈ut〉p−2〈Diut〉〈gkt 〉 (5.5)

with a constant N independent of n. Letting n→∞ in (5.4) we get

p〈ut〉p−2〈σikt Diut, g
k
t 〉 � −p(p− 2)〈ut〉p−4〈ut, σikt Diut〉〈ut, gkt 〉,

where, due to (5.5), 0/0 means 0 when it occurs .
These manipulations allow us to take care of the terms containing f and

g and show that to prove the lemma we have to prove

p(I0 + I1 + I2) + (p/2)I3 + [p(p− 2)/2](I4 + I5)

� −(p/4)〈ut〉p−2αijt 〈Diut, Djut〉, (5.6)

where

I0 = −〈ut〉p−2Dia
ij
t 〈ut, Djut〉, I1 = −〈ut〉p−2aijt 〈Diut, Djut〉

I2 = 〈ut〉p−2〈ut, bitDiut〉, I3 = 〈ut〉p−2
∑
k

〈σikt Diut + νkt ut〉2,

I4 = 〈ut〉p−4
∑
k

〈ut, σikt Diut + νkt ut〉2, I5 = −〈ut〉p−4Di〈ut〉2〈ut, aijt Djut〉.

Observe that

I0 = −(1/2)〈ut〉p−2Dia
ij
t Dj〈ut〉2 = −(1/p)Dj〈ut〉pDia

ij
t � 0,

by the smoothness of a. Also notice that

I3 � 〈ut〉p−2σikt σ
jk
t 〈Diut, Djut〉+ I6,

where
I6 = 2〈ut〉p−2σikt 〈Diut, ν

kut〉.
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It follows that

pI1 + (p/2)I3 � −(p/2)〈ut〉p−2αijt 〈Diut, Djut〉+ (p/2)I6.

Next,

I4 � 〈ut〉p−4σikt σ
jk
t 〈ut, Diut〉〈ut, Djut〉+ 2〈ut〉p−4σikt 〈ut, Diut〉〈ut, νkt ut〉

= (1/4)〈ut〉p−4σikt σ
jk
t Di〈ut〉2Dj〈ut〉2 + [2/(p− 2)](Di〈ut〉p−2)σikt 〈ut, νkt ut〉

� (1/4)〈ut〉p−4σikt σ
jk
t Di〈ut〉2Dj〈ut〉2 − [1/(p− 2)]I6 − [2/(p− 2)]I7,

where

I7 = 〈ut〉p−2σikt 〈ut, νkt Diut〉.
Hence

pI1 + (p/2)I3 + [p(p− 2)/2](I4 + I5) � −(p/2)〈ut〉p−2αijt 〈Diut, Djut〉

−[p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2 − pI7,

and

I2 − I7 = 〈ut〉p−2(〈ut, bitDiut〉 − σikt 〈ut, νkt Diut〉) = 〈ut〉p−2〈ut, βitDiut〉,

with βi = bi − σikνk. It follows by Remark 3.2 that the left-hand side of
(5.6) is estimated in the order defined by � by

−(p/2)〈ut〉p−2αijt 〈Diut, Djut〉

−[p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2

+K0p〈ut〉p−2
∣∣ d∑
i,j=1

αijt 〈Diut, Djut〉
∣∣1/2〈ut〉+ hiDi〈ut〉p

� −(p/4)〈ut〉p−2αijt 〈Diut, Djut〉

−[p(p− 2)/8]〈ut〉p−4αijt Di〈ut〉2Dj〈ut〉2〉, (5.7)

where the last relation follows from the elementary inequality ab ≤ εa2 +
ε−1b2. The lemma is proved. �

Remark 5.1. In the case that p = 2 one can replace condition (3.6) with the
following:

There are constant K0, N ≥ 0 such that for all continuously differentiable
RM -valued functions u = u(x) with compact support in Rd and all values
of the arguments we have∫

Rd

〈u, βiDiu〉 dx ≤ N
∫
Rd

〈u〉2 dx
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+K0

∫
Rd

(∣∣ d∑
i,j=1

αij〈Diu,Dju〉
∣∣1/2〈u〉+ hi〈Diu, u〉

)
dx. (5.8)

This condition is weaker than (3.6) as follows from Remark 3.2 and still by
inspecting the above proof we get that u is a continuous L2(Rd,RM )-valued
process, and there is a constant N = N(K, d,M,K0) such that (5.1) holds
with p = 2.

Remark 5.2. In the case that p = 2 and the magnitudes of the first deriva-
tives of bi are bounded by K one can further replace condition (5.8) with a
more tractable one, which is Assumption 3.4.

Indeed, for ε > 0

R := 〈u, (βi − hiIM )Diu〉 = 1
2β

iklDi(u
kul) + 〈u, (β̄i − hiIM )Diu〉

≤ 1
2β

iklDi(u
kul) + ε〈(β̄i − hiIM )Diu〉2/2 + ε−1〈u〉2/2.

Using Assumption 3.4 we get

R ≤ 1
2β

iklDi(u
kul) + εMK0α

ij〈Diu,Dju〉/2 + ε−1〈u〉2/2
for every ε > 0. Hence by integration by parts we have∫

Rd

〈u, βiDiu〉 dx ≤ N
∫
Rd

〈u〉2 dx+

∫
Rd

〈u, hiIMDiu〉 dx

+MK0

∫
Rd

(ε/2)αij〈Diut, Djut〉+ (ε−1/2)〈u〉2 dx.

Minimising here over ε > 0 we get (5.8). In that case again u is a continuous
L2(Rd,RM )-valued process, and there is a constant N = N(K, d,M,K0)
such that (5.1) holds with p = 2.

Remark 5.3. If M = 1, then condition (3.7) is obviously satisfied with K0 =
0 and hi = bi − σikνk.

Also note that in the general case, if the coefficients are smoother, then
by formally differentiating equation (3.1) with respect to xi we obtain a new
system of equations for the M × d matrix-valued function

vt = (vnmt ) = Dut = (Dmu
n
t ).

We treat the space of M ×d matrices as a Euclidean Md-dimensional space,
the coordinates in which are organized in a special way. The inner product
in this space is then just 〈〈A,B〉〉 = trAB∗. Naturally, linear operators in

this space will be given by matrices like (T (nm)(pj)), which transforms an
M × d matrix (Apj) into an M × d matrix (Bnm) by the formula

Bnm =
m∑
p=1

d∑
j=1

T (nm)(pj)Apj .
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We claim that the coefficients, the initial value and free terms of the
system for vt satisfy Assumptions 3.1, 3.2, and 3.3 with m − 1 ≥ 0 if As-
sumptions 3.1, 3.2, and 3.3 are satisfied with m ≥ 1 for the coefficients, the
initial value and free terms of the original system for ut.

Indeed, as is easy to see, vt satisfies (3.1) with the same σ and a and with

b̃i, c̃, f̃ , ν̃k, g̃k in place of bi, c, f , νk, gk, respectively, where

b̃i(nm)(pj) = Dma
ijδpn + binpδjm, c̃(nm)(pj) = cnpδmj +Dmb

jnp, (5.9)

f̃nm = Dmf
n + urDmc

nr, ν̃k(nm)(pj) = Dmσ
jkδnp + νknpδmj ,

g̃knm = Dmg
kn + urDmν

knr. (5.10)

Then the left-hand side of the counterpart of (3.7) for v is

d∑
m=1

Km +
M∑
n=1

Jn,

where (no summation with respect to m)

Km = vnmbinrDiv
rm − σikvnmνknrDiv

rm

and (no summation with respect to n)

Jn = vnmDma
ijDiv

nj − σikvnmDmσ
jkDiv

nj .

Observe that Div
nj = Diju

n implying that

σikDmσ
jkDiv

nj = (1/2)Dm(σikσjk)Diju
n,

Jn = (1/2)vnmDmα
ijDiju

n.

By Lemma 4.2 for any ε > 0 and n (still no summation with respect to n)

Jn ≤ Nε−1〈〈v〉〉2 + εαijDiku
nDjku

n,

which along with the fact that Diku
n = Div

nk yields

M∑
n=1

Jn ≤ Nε−1〈〈v〉〉2 + εαij〈〈Div,Djv〉〉.

Upon minimizing with respect to ε we find

M∑
n=1

Jn ≤ N
( d∑
i,j=1

αij〈〈Div,Djv〉〉
)1/2〈〈v〉〉.

Next, by assumption for any ε > 0 and m (still no summation with respect
to m)

Km ≤ Nε−1〈〈v〉〉2 + εαijDiv
rmDjv

rm + (1/2)hiDi

M∑
r=1

(vrm)2.
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We conclude as above that
d∑

m=1

Km ≤ N
( d∑
i,j=1

αij〈〈Div,Djv〉〉
)1/2〈〈v〉〉+ hi〈〈Div, v〉〉

and this proves our claim.
The above calculations show also that the coefficients, the initial value

and the free terms of the system for vt satisfy Assumptions 3.1, 3.2, and 3.4
with m ≥ 0 if Assumptions 3.1, 3.2, and 3.4 are satisfied with m ≥ 1 for the
coefficients, the initial value and free terms of the original equation for ut.
(Note that due to Assumptions 3.1 with m ≥ 1, b̃, given in (5.9), has first
order derivatives in x, which in magnitude are bounded by a constant.)

Now higher order derivatives of u are obviously estimated through lower
order ones on the basis of this remark without any additional computations.
However, we still need to be sure that we can differentiate equation (3.1).

By the help of the above remarks one can easily estimate the moments of
the Wn

p -norms of u using of the following version of Gronwall’s lemma.

Lemma 5.2. Let y = (yt)t∈[0,T ] and F = (Ft)t∈[0,T ] be adapted nonnegative
stochastic processes and let m = (mt)t∈[0,T ] be a continuous local martingale
such that

dyt ≤ (Nyt + Ft) dt+ dmt on [0, T ] (5.11)

d[m]t ≤ (Ny2
t + y

2(1−ρ)
t G2ρ

t ) dt on [0, T ], (5.12)

with some constants N ≥ 0 and ρ ∈ [0, 1/2], and a nonnegative adapted
stochastic process G = (Gt)t∈[0,T ], such that∫ T

0
Gt dt <∞ (a.s.),

where [m] is the quadratic variation process for m. Then for any q > 0

E sup
t≤T

yqt ≤ CEy
q
0 + CE

{∫ T

0
(Ft +Gt) dt

}q
with a constant C = C(N, q, ρ, T ).

Proof. This lemma improves Lemma 3.7 from [10]. Its proof goes in the
same way as that in [10], and can be found in [11]. �

Lemma 5.3. Let m ≥ 0. Suppose that Assumptions 3.1, 3.2, and 3.3 are
satisfied and assume that u = (ut)t∈[0,T ] is a solution of (3.1)-(3.2) on [0, T ]
such that (a.s.) ∫ T

0
|ut|pWm+1

p
dt <∞.

Then (a.s.) u is a continuous Wm
p (Rd,RM )-valued process and for any q > 0

E sup
t∈[0,T ]

|ut|qWm
p
≤ N(E|ψ|qWm

p
+ EKqm,p(T )) (5.13)
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with a constant N = N(m, p, q, d,M,K,K0, T ). If p = 2 and instead of
Assumption 3.3 Assumption 3.4 holds and (in case m = 0) the magni-
tudes of the first derivatives of bi are bounded by K, then u is a continuous
Wm

2 (Rd,RM )-valued process, and for any q > 0 estimate (5.13) holds (with
p = 2).

Proof. We are going to prove the lemma by induction on m. First let m = 0
and denote yt := |ut|pLp

. Then by virtue of Remark 5.2 and Lemma 5.1,

the process y = (yt)t∈[0,T ] is an adapted Lp-valued continuous process, and
(5.11) holds with

Ft :=

∫
Rd

[
〈ft〉p +

(∑
k

〈gkt 〉2
)p/2

+
(∑

k

〈Dgkt 〉2
)p/2]

dx,

mt := p

∫ t

0

∫
Rd

〈us〉p−2〈us, σiks Dius + νks us + gks 〉 dx dwks .

Notice that

d[mt] = p2
∞∑
r=1

(∫
Rd

〈ut〉p−2〈ut, σirt Diut + νrt ut + grt 〉 dx
)2

dt.

≤ 3p2(At +Bt + Ct) dt,

with

At =

∞∑
r=1

(
p

∫
Rd

〈ut〉p−2σirt 〈ut, Diut〉 dx
)2

=

∞∑
r=1

(∫
Rd

σirt Di〈ut〉p dx
)2

,

Bt =

∞∑
r=1

(∫
Rd

〈ut〉p−2〈ut, νrt ut〉 dx
)2

, Ct =

∞∑
r=1

(∫
Rd

〈ut〉p−2〈ut, grt 〉 dx
)2

.

Integrating by parts and then using Minkowski’s inequality, due to As-
sumption 2.1, we get At ≤ Ny2

t with a constant N = N(K,M, d). Using
Minkowski’s inequality and taking into account that

∞∑
r=1

〈u, νru〉2 ≤ 〈u〉4
∞∑
r=1

|νr|2 ≤ N〈u〉4,
∞∑
r=1

〈u, gr〉2 ≤ 〈u〉2|g|,

we obtain

Bt ≤ Ny2
t , Ct ≤

(∫
Rd

〈ut〉p−1|gt| dx
)2

≤ |yt|2(p−1)/p|gt|2Lp
.

Consequently, condition (5.12) holds with Gt = |gt|pLp
, ρ = 1/p, and we get

(5.13) with m = 0 by applying Lemma 5.2.
Let m ≥ 1 and assume that the assertions of the lemma are valid for

m− 1, in place of m, for any M ≥ 1, p ≥ 2 and q > 0, for any u, ψ, f and
g satisfying the assumptions with m− 1 in place of m. Recall the notation
v = (vnlt ) = (Dlu

n
t ) from Remark 5.3, and that vt satisfies (3.1) with the

same σ and a and with b̃i, c̃, f̃ , ν̃k, g̃k in place of bi, c, f , νk, gk, respectively.
By virtue of Remarks 5.3 and 5.2 the system for v = (vt)t∈[0,T ] satisfies
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Assumption 3.3, and it is easy to see that it satisfies also Assumptions 3.1
and 3.2 with m− 1 in place of m. Hence by the induction hypothesis v is a
continuous Wm−1

p (Rd,RM )-valued adapted process, and we have

E sup
t∈[0,T ]

|vt|qWm−1
p
≤ N(E|ψ̃|q

Wm−1
p

+ EK̃qm−1,p(T )) (5.14)

with a constant N = N(T,K,K0,M, d, p, q), where ψ̃nl = Dlψ
n,

K̃pm−1,p(T ) :=

∫ T

0
(|f̃t|pWm−1

p
+ |g̃t|pWm

p
) dt.

It follows that (ut)t∈[0,T ] is a Wm
p (Rd,RM )-valued continuous adapted pro-

cess, and by using the induction hypothesis it is easy to see that

EK̃qm−1,p(T )) ≤ N(E|ψ|qWm
p

+ EKqm,p(T )).

Thus (5.13) follows.
If p = 2 and Assumption 3.3 is replaced with Assumptions 3.4, then the

proof of the conclusion of the lemma goes in the same way with obvious
changes. The proof is complete. �

6. Proof of Theorems 3.1 and 3.2

First we prove uniqueness. Let u(1) and u(2) be solutions to (3.1)-(3.2),

and let Assumptions 3.1, 3.2 and 3.3 hold with m = 0. Then u := u(1)−u(2)

solves (3.1) with u0 = 0, g = 0 and f = 0 and Lemma 5.1 and Remark 5.2 are
applicable to u. Then using Itô’s formula for transforming |ut|pLp

exp(−λt)
with a sufficiently large constant λ, after simple calculations we get that
almost surely

0 ≤ e−λt|ut|pLp
≤ mt for all t ∈ [0, T ],

where m := (mt)t∈[0,T ] is a continuous local martingale starting from 0.
Hence almost surely mt = 0 for all t, and it follows that almost surely

u
(1)
t (x) = u

(2)
t (x) for all t and almost every x ∈ Rd. If p = 2 and Assumptions

3.1, 3.2 and 3.4 hold and the magnitudes of the first derivatives of bi are
bounded by K and u(1) and u(2) are solutions, then we can repeat the above
argument with p = 2 to get u(1) = u(2).

To show the existence of solutions we approximate the data of system
(3.1) with smooth ones, satisfying also the strong stochastic parabolicity,
Assumption 4.1. To this end we will use the approximation described in the
following lemma.

Lemma 6.1. Let Assumptions 3.1 and 3.3 (3.4, respectively) hold with m ≥
1. Then for every ε ∈ (0, 1) there exist P ⊗B(Rd)-measurable smooth (in x)

functions aεij, b(ε)i, c(ε), σ(ε)i, ν(ε), Dka
εij and h(ε)i, satisfying the following

conditions for every i, j, k = 1, ..., d.
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(i) There is a constant N = N(K) such that

|aεij − aij |+ |b(ε)i − bi|+ |c(ε) − c|+ |Dka
εij −Dka

ij | ≤ Nε,

|σ(ε)i − σi|+ |ν(ε) − ν| ≤ Nε
for all (ω, t, x) and i, j, k = 1, ..., d.

(ii) For every integer n ≥ 0 the partial derivatives in x of aεij, b(ε)i, c(ε),

σ(ε)i and ν(ε) up to order n are P ⊗ B(Rd)-measurable functions,
in magnitude bounded by a constant. For n = m this constant is
independent of ε, it depends only on m, M , d and K;

(iii) For the matrix αεij := 2aεij − σ(ε)ikσ(ε)jk we have

αεijλiλj ≥ ε
d∑
i=1

|λi|2 for all λ = (λ1, ..., λd) ∈ Rd;

(iv) Assumption 3.3 (3.4, respectively) holds for the functions αεij, βεi :=

b(ε)i−σ(ε)ikν(ε)k and h(ε)i in place of αij, βi and hi, respectively, with
the same constant K0.

Proof. The proofs of the two statements containing Assumptions 3.3 and
3.4, respectively, go in essentially the same way, therefore we only detail the
former. Let ζ be a nonnegative smooth function on Rd with unit integral
and support in the unit ball, and let ζε(x) = ε−dζ(x/ε). Define

b(ε)i = bi ∗ ζε, c(ε) = c ∗ ζε, σ(ε)i = σi ∗ ζε, ν(ε) = ν ∗ ζε, h(ε)i = hi ∗ ζε,

and aεij = aij ∗ ζε + kεδij with a constant k > 0 determined later, where
δij is the Kronecker symbol and ‘∗’ means the convolution in the variable

x ∈ Rd. Since we have mollified functions which are bounded and Lipschitz
continuous, the mollified functions, together with aεij and Dka

εij , satisfy
conditions (i) and (ii). Furthermore,

|σ(ε)irν(ε)r − σirνr| ≤ |σ(ε)i − σi||ν(ε)|+ |σi||ν(ε) − ν| ≤ 2K2ε,

for every i = 1, ..., d. Similarly,

|σ(ε)irσ(ε)jr − σirσjr| ≤ 2K2ε, |b(ε)i − bi| ≤ Kε, |h(ε)i − hi| ≤ Nε

for all i, j = 1, 2, ..., d. Hence setting

Bεi = b(ε)i − σ(ε)ikν(ε)k − h(ε)iIM ,

and using the notation Bi for the same expression without the superscript
‘ε’, we have

|Bεi −Bi| ≤ |b(ε)i − bi|+ |σ(ε)irν(ε)r − σirνr|+
√
M |h(ε)i − hi| ≤ Rε,

|B(ε)i +Bi| ≤ R
with a constant R = R(M,K). Thus for any z1,...,zd vectors from RM

|〈Bεizi〉2 − 〈Bizi〉2| = |〈(Bεi −Bi)zi, (B
εj +Bj)zj〉|
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≤ |Bεi −Bi||Bεj +Bj |〈zi〉〈zj〉 ≤ dR2ε
d∑
i=1

〈zi〉2.

Therefore

〈Bεizi〉2 ≤ 〈Bizi〉2 + C1ε

d∑
i=1

〈zi〉2

with a constant C1 = C1(M,K, d). Similarly,∑
i,j

(2aεij − σ(ε)ikσ(ε)jk)〈zi, zj〉

≥
∑
i,j

(2aij − σikσjk)〈zi, zj〉+ (k − C2)ε
∑
i

〈zi〉2

with a constant C2 = C2(K,m, d). Consequently,

〈(βεi − h(ε)iIM )zi〉2 ≤ 〈Bizi〉2 + C1ε
d∑
i=1

〈zi〉2

≤ K0

d∑
i,j=1

αij〈zi, zj〉+ C1ε
d∑
i=1

〈zi〉2

≤ K0

d∑
i,j=1

αεij〈zi, zj〉+ (K0(C2 − k) + C1)ε
d∑
i=1

〈zi〉2.

Choosing k such that K0(C2 − k) + C1 = −K0 we get

〈(βεi − h(ε)iIM )zi〉2 +K0ε
d∑
i=1

〈zi〉2 ≤ K0

d∑
i,j=1

αεij〈zi, zj〉.

Hence statements (iii) and (iv) follow immediately. �

Now we start with the proof of the existence of solutions which are
Wm
p (Rd,RM )-valued if the Assumptions 3.1, 3.2 and 3.3 hold with m ≥ 1.

First we make the additional assumptions that ψ, f and g vanish for |x| ≥ R
for some R > 0, and that q ∈ [2,∞) and

E|ψ|qWm
p

+ EKqm,q(T ) <∞. (6.1)

For each ε > 0 we consider the system

duεt = [σ
(ε)ir
t Diu

ε
t + ν

(ε)r
t uεt + g

(ε)r
t ] dwrt

+
[
aεijt Diju

ε
t + b

(ε)i
t Diu

ε
t + f

(ε)
t

]
dt (6.2)

with initial condition
u

(ε)
0 = ψ(ε), (6.3)

where the coefficients are taken from Lemma 6.1, and ψ(ε), f (ε) and g(ε)

are defined as the convolution of ψ, f and g, respectively, with ζε(·) =
ε−dζ(·/ε) for ζ ∈ C∞0 (Rd) taken from the proof of Lemma 6.1. By Theorem
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4.1 the above equation has a unique solution uε, which is a Wn
2 (Rd,RM )-

valued continuous process for all n. Hence, by Sobolev embeddings, uε is a
Wm+1
p (Rd,RM )-valued continuous process, and therefore we can use Lemma

5.3 to get

E sup
t∈[0,T ]

|uεt |
q
Wn

p′
≤ N(E|ψ(ε)|qWn

p′
+ E(Kεn,p′)q(T )) (6.4)

for p′ ∈ {p, 2} and n = 0, 1, 2...m, where Kεn,p′ is defined by (3.4) with f (ε)

and g(ε) in place of f and g, respectively. Keeping in mind that T 1/r ≤
max{1, T}, and using basic properties of convolution, we can conclude that

E

(∫ T

0
|uεt |rWn

p′
dt

)q/r
≤ N(E|ψ|qWn

p′
+ EKqn,p′(T )) (6.5)

for any r > 1 and with N = N(m, p, q, d,M,K, T ) not depending on r.
For integers n ≥ 0, and any r, q ∈ (1,∞) let Hn

p,r,q be the space of RM -

valued functions v = vt(x) = (vit(x))Mi=1 on Ω × [0, T ] × Rd such that v =
(vt(·))t∈[0,T ] are Wn

p (Rd,RM )-valued predictable processes and

|v|qHn
p,r,q

= E

(∫ T

0
|vt|rWn

p
dt

)q/r
<∞.

Then Hn
p,r,q with the norm defined above is a reflexive Banach space for each

n ≥ 0 and p, r, q ∈ (1,∞). We use the notation Hn
p,q for Hn

p,q,q.
By Assumption 3.2 the right-hand side of (6.5) is finite for p′ = p and also

for p = 2 since ψ, f and g vanish for |x| ≥ R. Thus there exists a sequence
(εk)k∈N such that εk → 0 and for p′ = p, 2 and integers r > 1 and n ∈ [0,m]
the sequence vk := uεk converges weakly in Hn

p′r,q to some v ∈ Hm
p′,r,q, which

therefore also satisfies

E

(∫ T

0
|vt|rWn

p′
dt

)q/r
≤ N(E|ψ|qWn

p′
+ EKqn,q(T ))

for p′ = p, 2 and integers r > 1. Using this with p′ = p and letting r → ∞
by Fatou’s lemma we obtain

E ess sup
t∈[0,T ]

|vt|qWn
p
≤ N(E|ψ|qWn

p
+ EKqn,p(T )) for n = 0, 1, ...,m. (6.6)

Now we are going to show that a suitable stochastic modification of v is
a solution of (3.1)-(3.2). To this end we fix an RM -valued function ϕ in
C∞0 (Rd) and a predictable real-valued process (ηt)t∈[0,T ], which is bounded

by some constant C, and define the functionals Φ, Φk, Ψ and Ψk over H1
p,q

by

Φk(u) = E

∫ T

0
ηt

∫ t

0
{−(aεkijs Dius, Djϕ) + (b̄εkis Dius + c(εk)

s us, ϕ)} ds dt,

Φ(u) = E

∫ T

0
ηt

∫ t

0
{−(aijs Dius, Djϕ) + (b̄isDius + csus, ϕ)} ds dt,
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Ψ(u) = E

∫ T

0
ηt

∫ t

0
(σirt Diut + νrt ut, ϕ) dwrt dt

Ψk(u) = E

∫ T

0
ηt

∫ t

0
(σ

(εk)ir
t Diut + ν

(εk)r
t ut, ϕ) dwrt dt

for u ∈ H1
p,q for each k ≥ 1, where b̄εi = b(ε)i−Dja

εijIM . By the Bunyakovsky-
Cauchy-Schwarz and the Burkholder-Davis-Gundy inequalities for all u ∈
H1
p,q we have

Φ(u) ≤ CNT 2−1/q|u|H1
p,q
|ϕ|W 1

p̄
,

Ψ(u) ≤CTE sup
t≤T
|
∫ t

0
(σirt Diut + νrt ut, ϕ) dwrt |

≤3CTE

{∫ T

0

∞∑
r=1

(σirt Diut + νrt ut, ϕ)2 dt

}1/2

≤3CTE

{∫ T

0

(∫
Rd

|〈σirt Diut + νrt ut, ϕ〉|l2 dx
)2

dt

}1/2

≤CTNE
{∫ T

0
|ut|2W 1

p
|ϕ|2W 1

p̄
dt

}1/2

≤ CNT q/2|u|H1
p,q
|ϕ|W 1

p̄

with a constant N = N(K, d,M), where p̄ = p/(p − 1). (In the last in-
equality we make use of the assumption q ≥ 2.) Consequently, Φ and Ψ are
continuous linear functionals over H1

p,q, and therefore

lim
k→∞

Φ(vk) = Φ(v), lim
k→∞

Ψ(vk) = Ψ(v). (6.7)

Using statement (i) of Lemma 6.1, we get

|Φk(u)− Φ(u)|+ |Ψk(u)−Ψ(u)| ≤ Nεk|u|H1
p,q
|ϕ|W 1

p̄
(6.8)

for all u ∈ H1
p,q with a constant N = N(k, d,M). Since uε is the solution of

(6.2)-(6.3), we have

E

∫ T

0
ηt(v

k
t , ϕ) dt = E

∫ T

0
ηt(ψ

k, ϕ) dt+ Φ(vk) + Ψ(vk)

+F (f (εk)) +G(g(εk)) (6.9)

for each k, where

F (f (εk)) = E

∫ T

0
ηt

∫ t

0
(f (εk)
s , ϕ) ds dt,

G(g(εk)) = E

∫ T

0
ηt

∫ t

0
(g(εk)r
s , ϕ) dwrs dt.
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Taking into account that |vk|H1
p,q

is a bounded sequence, from (6.7) and (6.8)

we obtain
lim
k→∞

Φn(vk) = Φ(v), lim
k→∞

Ψk(v
k) = Ψ(v). (6.10)

One can see similarly (in fact easier), that

lim
k→∞

E

∫ T

0
ηt(v

k
t , ϕ) dt = E

∫ T

0
ηt(vt, ϕ) dt, (6.11)

lim
k→∞

E

∫ T

0
ηt(ψ

(εk)
t , ϕ) dt = E

∫ T

0
ηt(ψ,ϕ) dt, (6.12)

lim
k→∞

F (f (εk)) = F (f), lim
k→∞

G(g(εk)) = G(g). (6.13)

Letting k →∞ in (6.9), and using (6.10) through (6.13) we obtain

E

∫ T

0
ηt(vt, ϕ) dt

= E

∫ T

0
ηt

{
(ψ,ϕ) +

∫ t

0

[
− (aijs Dius, Djϕ) + (b̄isDius + csus + fs, ϕ)

]
ds

+

∫ t

0
(σirDivs + νrvs, ϕ) dwrs

}
dt

for every bounded predictable process (ηt)t∈[0,T ] and ϕ from C∞0 . Hence for
each ϕ ∈ C∞0

(vt, ϕ) = (ψ,ϕ) +

∫ t

0

[
− (aijs Divs, Djϕ) + (b̄isDivs + csvs + fs, ϕ)

]
ds

+

∫ t

0
(σirDivs + νrvs + grs , ϕ) dwrs

holds for P×dt almost every (ω, t) ∈ Ω×[0, T ]. Substituting here (−1)|α|Dαϕ
in place of ϕ for a multi-index α = (α1, ..., αd) of length |α| ≤ m − 1 and
integrating by parts, we see that

(Dαvt, ϕ) = (Dαψ,ϕ) +

∫ t

0

[
− (F js , Djϕ) + (F 0

s , ϕ)
]
ds+

∫ t

0
(Grs, ϕ) dwrs

(6.14)
for P ×dt almost every (ω, t) ∈ Ω× [0, T ], where, owing to the fact that (6.6)
also holds with 2 in place of p, F i and (Gr)∞r=1 are predictable processes with
values in L2-spaces for i = 0, 1, ..., d, such that∫ T

0

( d∑
i=0

|F is |2L2
+ |Gs|2L2

)
ds <∞ (a.s.).

Hence the theorem on Itô’s formula from [21] implies that in the equivalence
class of v in Hm

2,q there is a Wm−1
2 (Rd,RM )-valued continuous process, u =

(ut)t∈[0,T ], and (6.14) with u in place of v holds for any ϕ ∈ C∞0 (Rd) almost
surely for all t ∈ [0, T ]. After that an application of Lemma 4.3 to Dαu for
|α| ≤ m − 1 yields that Dαu is an Lp(Rd,RM )-valued, strongly continuous



28 M. GERENCSÉR, I. GYÖNGY, AND N.V. KRYLOV

process for every |α| ≤ m − 1, i.e., u is a Wm−1
p (Rd,RM )-valued strongly

continuous process. This, (6.6), and the denseness of C∞0 in Wm
p (Rd,RM )

implies that (a.s.) u is a Wm
p (Rd,RM )-valued weakly continuous process

and (3.11) holds.
To prove the theorem without the assumption that ψ, f and g have

compact support, we take a ζ ∈ C∞0 (Rd) such that ζ(x) = 1 for |x| ≤ 1
and ζ(x) = 0 for |x| ≥ 2, and define ζn(·) = ζ(·/n) for n > 0. Let
u(n) = (ut(n))t∈[0,T ] denote the solution of (3.1)-(3.2) with ζnψ, ζnf and
ζng in place of ψ, f and g, respectively. By virtue of what we have proved
above, u(n) is a weakly continuous Wm

p (Rd,RM )-valued process, and

E sup
t∈[0,T ]

|ut(n)− ut(l)|qWm
p
≤ NE|(ζn − ζl)ψ|qWm

p

+NE
( ∫ T

0
{|(ζn − ζl)fs|pWm

p
+ |(ζn − ζl)gs|pWm+1

p
} ds

)q/p
.

Letting here n, l→∞ and applying Lebesgue’s theorem on dominated con-
vergence in the left-hand side, we see that the right-hand side of the in-
equality tends to zero. Thus for a subsequence nk →∞ we have that ut(nk)
converges strongly in Wm

p (Rd,RM ), uniformly in t ∈ [0, T ], to a process u.

Hence u is a weakly continuous Wm
p (Rd,RM )-valued process. It is easy to

show that it solves (3.1)-(3.2) and satisfies (3.11).
By using a standard stopping time argument we can dispense with con-

dition (6.1). Finally we can prove estimate (3.11) for q ∈ (0, 2) by applying
Lemma 3.2 from [8] in the same way as it is used there to prove the cor-
responding estimate in the case M = 1. The proof of the Theorem 3.1 is
complete. We have already showed the uniqueness statement of Theorem
3.2, the proof of the other assertions goes in the above way with obvious
changes.
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