262 research outputs found

    The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    Get PDF
    Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning.DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized.DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning

    Molecular Approach to the Identification of Fish in the South China Sea

    Get PDF
    BACKGROUND: DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species. CONCLUSIONS/SIGNIFICANCE: The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy

    Barcoding Bugs: DNA-Based Identification of the True Bugs (Insecta: Hemiptera: Heteroptera)

    Get PDF
    oxidase I (COI) gene, has been shown to provide an efficient method for the identification of species in a wide range of animal taxa. In order to assess the effectiveness of barcodes in the discrimination of Heteroptera, we examined 344 species belonging to 178 genera, drawn from specimens in the Canadian National Collection of Insects.Analysis of the COI gene revealed less than 2% intra-specific divergence in 90% of the taxa examined, while minimum interspecific distances exceeded 3% in 77% of congeneric species pairs. Instances where barcodes fail to distinguish species represented clusters of morphologically similar species, except one case of barcode identity between species in different genera. Several instances of deep intraspecific divergence were detected suggesting possible cryptic species.Although this analysis encompasses 0.8% of the described global fauna, our results indicate that DNA barcodes will aid the identification of Heteroptera. This advance will be useful in pest management, regulatory and environmental applications and will also reveal species that require further taxonomic research

    Wolbachia and DNA barcoding insects: patterns, potential and problems

    Get PDF
    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region

    Neotropical Bats: Estimating Species Diversity with DNA Barcodes

    Get PDF
    DNA barcoding using the cytochrome c oxidase subunit 1 gene (COI) is frequently employed as an efficient method of species identification in animal life and may also be used to estimate species richness, particularly in understudied faunas. Despite numerous past demonstrations of the efficiency of this technique, few studies have attempted to employ DNA barcoding methodologies on a large geographic scale, particularly within tropical regions. In this study we survey current and potential species diversity using DNA barcodes with a collection of more than 9000 individuals from 163 species of Neotropical bats (order Chiroptera). This represents one of the largest surveys to employ this strategy on any animal group and is certainly the largest to date for land vertebrates. Our analysis documents the utility of this tool over great geographic distances and across extraordinarily diverse habitats. Among the 163 included species 98.8% possessed distinct sets of COI haplotypes making them easily recognizable at this locus. We detected only a single case of shared haplotypes. Intraspecific diversity in the region was high among currently recognized species (mean of 1.38%, range 0–11.79%) with respect to birds, though comparable to other bat assemblages. In 44 of 163 cases, well-supported, distinct intraspecific lineages were identified which may suggest the presence of cryptic species though mean and maximum intraspecific divergence were not good predictors of their presence. In all cases, intraspecific lineages require additional investigation using complementary molecular techniques and additional characters such as morphology and acoustic data. Our analysis provides strong support for the continued assembly of DNA barcoding libraries and ongoing taxonomic investigation of bats

    Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and Their Prey on Coral Reefs of the Mexican Caribbean

    Get PDF
    BACKGROUND: In the Mexican Caribbean, the exotic lionfish Pterois volitans has become a species of great concern because of their predatory habits and rapid expansion onto the Mesoamerican coral reef, the second largest continuous reef system in the world. This is the first report of DNA identification of stomach contents of lionfish using the barcode of life reference database (BOLD). METHODOLOGY/PRINCIPAL FINDINGS: We confirm with barcoding that only Pterois volitans is apparently present in the Mexican Caribbean. We analyzed the stomach contents of 157 specimens of P. volitans from various locations in the region. Based on DNA matches in the Barcode of Life Database (BOLD) and GenBank, we identified fishes from five orders, 14 families, 22 genera and 34 species in the stomach contents. The families with the most species represented were Gobiidae and Apogonidae. Some prey taxa are commercially important species. Seven species were new records for the Mexican Caribbean: Apogon mosavi, Coryphopterus venezuelae, C. thrix, C. tortugae, Lythrypnus minimus, Starksia langi and S. ocellata. DNA matches, as well as the presence of intact lionfish in the stomach contents, indicate some degree of cannibalism, a behavior confirmed in this species by the first time. We obtained 45 distinct crustacean prey sequences, from which only 20 taxa could be identified from the BOLD and GenBank databases. The matches were primarily to Decapoda but only a single taxon could be identified to the species level, Euphausia americana. CONCLUSIONS/SIGNIFICANCE: This technique proved to be an efficient and useful method, especially since prey species could be identified from partially-digested remains. The primary limitation is the lack of comprehensive coverage of potential prey species in the region in the BOLD and GenBank databases, especially among invertebrates

    Identifying Canadian Freshwater Fishes through DNA Barcodes

    Get PDF
    BACKGROUND: DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. METHODOLOGY/PRINCIPAL FINDINGS: We bi-directionally sequenced the standard 652 bp "barcode" region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. CONCLUSIONS/SIGNIFICANCE: The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics

    DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    Get PDF
    DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region..This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide robust support for most morphologically based taxon concepts and also highlight key areas of taxonomic uncertainty worthy of reappraisal
    • …
    corecore