
1 
  

Approaches to integrating genetic data into ecological networks  1 

 2 

Running Head: Molecular Food Webs 3 

 4 

Elizabeth L. Clare1,2, Aron J. Fazekas3, Natalia V. Ivanova2, Robin M. Floyd4, Paul D.N. 5 

Hebert2, Amanda M. Adams5, Juliet Nagel6, Rebecca Girton1, Steven G. Newmaster3, M. 6 

Brock Fenton7 7 

 8 
1 School of Biological and Chemical Sciences, Queen Mary University of London. 9 

London UK. E14NS 10 

2Centre for Biodiversity Genomics, University of Guelph, Guelph Ontario, Canada N1G 11 

2W1 12 

3Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, Canada N1G 13 

2W1 14 

4Welcome Trust Stem Cell Institute, University of Cambridge, Cambridge, UK  15 

5Department of Biology, Texas A&M University, 3258 TAMU, College Station 77843 16 

USA 17 

6University of Maryland, Center for Environmental Science, Frostburg, MD, USA 18 

7Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada 19 

 20 

Corresponding Author: Elizabeth Clare, School of Biological and Chemical Sciences, 21 

Queen Mary University of London. London UK. E14NS, e.clare@qmul.ac.uk 22 

   23 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/190349329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
  

Abstract 24 

As molecular tools for assessing trophic interactions become common, research is 25 

increasingly focused on the construction of interaction networks. Here we demonstrate 26 

three key methods for incorporating DNA data into network ecology and discuss 27 

analytical considerations using a model consisting of plants, insects, bats and their 28 

parasites from the Costa Rican dry forest. The simplest method involves the use of 29 

Sanger sequencing to acquire long sequences to validate or refine field identifications, for 30 

example of bats and their parasites, where one specimen yields one sequence and one 31 

identification. This method can be fully quantified and resolved and these data resemble 32 

traditional ecological networks. For more complex taxonomic identifications, we target 33 

multiple DNA loci e.g. from a seed or fruit pulp sample in faeces. These networks are 34 

also well resolved but gene targets vary in resolution and quantification is difficult. 35 

Finally for mixed templates such as faecal contents of insectivorous bats we use DNA 36 

metabarcoding targeting two sequence lengths (157bp, 407bp) of one gene region and  a 37 

MOTU, BLAST and BIN association approach to resolve nodes. This network type is 38 

complex to generate and analyse and we discuss the implications of this type of 39 

resolution on network analysis. Using these data we construct the first molecular-based 40 

network of networks containing 3304 interactions between 762 nodes of 8 trophic 41 

functions and involving parasitic, mutualistic, and predatory interactions. We provide a 42 

comparison of the relative strengths and weaknesses of these data types in network 43 

ecology.  44 

Key Words: food webs, interaction networks, DNA barcoding, metabarcoding, high-45 

throughput sequencing, bats  46 
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Introduction:  47 

Ecological Networks, DNA & Opportunities 48 

Ecosystem functioning is driven by a network of interactions among species 49 

affected by diverse abiotic and biotic variables such as climate, habitat, and resource 50 

distribution (McCann, 2007) with global economic (Costanza et al., 1997) and 51 

conservation (Worm et al., 2006) impacts. The analysis of interaction networks is of 52 

increasing interest across many disciplines, spurring the development of new 53 

mathematical and statistical tools (Poisot, Stouffer, & Kéfi, 2016). In ecology, visual 54 

representations provide a synoptic view of complex interactions and are primarily 55 

displayed as bipartite networks, where trophic levels are depicted as layers (upper and 56 

lower) composed of species as nodes connected by links representing interactions 57 

(Dormann, Fründ, Blüthgen, & Gruber, 2009). When multiple networks are combined, it 58 

is possible to conceptualise multiple trophic levels simultaneously (e.g., Pocock, Evans 59 

and Memmott 2012) clarifying ecosystem assembly and structure (Milo et al., 2002), 60 

functional roles, and mechanisms of stability (McCann, 2000; Thébault & Fontaine, 61 

2010). Comparisons between networks can assess natural or anthropogenic impacts 62 

(McCann, 2007), the evolution of networks (Guimarães Jr, Jordano, & Thompson, 2011; 63 

Nuismer, Jordano, & Bascompte, 2013) and the role and response of specific nodes 64 

(Martín González, Dalsgaard, & Olesen, 2010; McDonald-Madden et al., 2016; Strona & 65 

Lafferty, 2016).  66 

Many networks are incredibly complex with multiple trophic levels and high 67 

taxonomic diversity (e.g. Pocock et al. 2012), and are therefore time consuming to 68 

construct, often requiring years of ecological observations and considerable taxonomic 69 
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expertise (Evans, Kitson, Lunt, Straw, & Pocock, 2016). Consequently, they are not 70 

readily scalable to rapid bio-monitoring or, if they can scale, they routinely suffer from 71 

problems of network completeness and poor or uneven resolution of taxa (Hemprich-72 

Bennett, Oliveira, Le Comber, Rossiter, & Clare, 2018; Ings et al., 2009). Incorporating 73 

dietary tracers such as fatty acids, isotopes, and genetic tools such as DNA sequencing is 74 

a growing trend for measuring species interactions, though each has advantages and 75 

disadvantages (reviewed in Nielsen, Clare, Hayden, Brett, & Kratina, 2018). Genetic 76 

analyses are expanding at a remarkable rate and have evolved from enzyme-linked 77 

immunosorbent assay (ELISA) and targeted species detection (Symondson, 2002) to the 78 

use of high-throughput sequencing (HTS) for the analysis of target markers or 79 

“metabarcoding” (reviewed in Pompanon et al., 2012). While these techniques are 80 

quickly becoming common for the dietary analysis of single species with many proposed 81 

applications (Clare, 2014), they have not been widely incorporated into network analysis 82 

(but see González-Varo, Arroyo, & Jordano, 2014; Hemprich-Bennett et al. 2018; Wirta 83 

et al., 2014) despite strong advocates (Evans et al., 2016; Roslin & Majaneva, 2016). 84 

Many reviews, authors, and developers of these techniques have discussed the 85 

challenges in DNA-based analyses of species interactions including the impacts of primer 86 

choice on taxonomic coverage and resolution, the completeness of reference databases 87 

(Pompanon et al., 2012), bioinformatics methods (Clare, Chain, Littlefair, & Cristescu, 88 

2016) and the role of quantification (Deagle et al., 2018) but the specific implications for 89 

constructing networks vary with data type. In traditional DNA barcoding a specimen’s ID 90 

is delimited by generating one sequence per specimen and comparing it to a reference 91 

dataset to confirm its identity. These data are not fundamentally different from traditional 92 
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observations for generating an interaction matrix. However, at the other end of the 93 

complexity spectrum, metabarcoding represents a novel data type for network ecology. 94 

HTS generates millions of sequences from each sample of mixed template. While the 95 

process can uniquely deal with otherwise intractable sources such as trace material and 96 

liquid feeders, it poses novel problems for ecological analysis and network ecology. First, 97 

the data require complex bioinformatics handling to remove unwanted (often error prone) 98 

data, but in many cases the impacts of these parameter choices on ecological analysis are 99 

unknown (Clare et al., 2016). Second, the ability to quantify DNA within a sample is 100 

highly controversial and while, in some cases, proportions of recovered sequence 101 

correspond to biomass, in other cases the connection is not clear (Deagle et al., 2018; 102 

Deagle, Thomas, Shaffer, Trites, & Jarman, 2013; Thomas, Deagle, Eveson, Harsch, & 103 

Trites, 2016). Finally, in an ideal situation, the recovered sequences are matched to a 104 

complete reference dataset to identify taxa, but in most cases the reference library is 105 

incomplete. In these cases either an incomplete network is created biased towards the 106 

contents of the reference collection (often larger, more charismatic or economically 107 

important taxa) or the recovered pool of DNA is converted into molecular operational 108 

taxonomic units - MOTUs (Floyd, Abebe, Papert, & Blaxter, 2002) - which are best 109 

viewed as pools of equivalent genetic diversity that can be compared, whether we know 110 

their identity or not (Clare et al., 2016; Floyd et al., 2002). In this case, each MOTU 111 

becomes a node in the network and this level of the network is entirely resolved to a 112 

common point of reference with both known and unknown items included, a distinct 113 

advantage when mixed resolution presents an analytical problem (Hemprich-Bennett et 114 

al., 2018; Ings et al., 2009). However, the level of this resolution is arbitrarily defined by 115 
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the bioinformatics assessment (see an analysis of parameters for MOTU definition in 116 

ecological analysis (Clare et al., 2016; Flynn, Brown, Chain, MacIsaac, & Cristescu, 117 

2015) which may collapse trophic levels and thus generate fundamentally different 118 

structures. This is of importance when selecting what metrics can or should be measured. 119 

Networks metrics can be divided into several broad classes. Network level metrics (e.g. 120 

connectance, nestedness, generality) are measured across the entire network. Node level 121 

metrics (e.g. centrality, species strength, partner diversity) are specific to the interactions 122 

of a given node. Motif measurements are sub-network of a particular pattern which may 123 

define specific ecological interaction types or functions (Milo et al., 2002). Each metric 124 

type needs to be considered separately in light of the new data type. Many have 125 

concluded that the molecular approach will transform the discipline of ecological 126 

biomonitoring and ecological network analysis permitting rapid consistent assessments in 127 

systems that are otherwise intractable (Gibson et al., 2015; Roslin & Majaneva, 2016; 128 

Toju, 2015; Wirta et al., 2014) while others have advocated adoption but raised serious 129 

analytical concerns (e.g. Evans et al., 2016). How then might we proceed?  130 

Here we address this challenge by focussing on a single complex assemblage of 131 

interacting species to demonstrate three approaches to the use of DNA data to resolve 132 

interactions and measure several network and node level metrics. While these are not 133 

without controversy, our objective is to present an example of methods of data integration 134 

into a “network of networks” and we include the most commonly analysed interaction 135 

types (antagonistic, mutualistic, parasitic) and the three key methods that have been 136 

discussed for DNA and network integration. First, we use standard single-gene DNA 137 

barcoding to resolve taxonomy in cryptic organisms and to validate field identifications. 138 
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Second, we use multi-gene DNA barcoding to resolve more complex taxa and single-139 

sourced trace material that cannot be identified by morphological methods. Third, we use 140 

metabarcoding to resolve mixed material, and then discuss the advantages and challenges 141 

of applying these approaches. While these have been used previously, our analysis 142 

provides the first example of integrating these data types to form a multi-trophic level 143 

assemblage resolved entirely with DNA and the first to contrast these data. We hope to 144 

provoke discussion about the appropriate use of these data types.  145 

 146 

Materials and Methods:  147 

A case study from Cost Rica: Plants, Bats, Insects, and Parasites 148 

From May to July 2009, a field team visited Sector Santa Rosa of the Area de 149 

Conservación Guanacaste (ACG). The present analysis relies on material collected during 150 

that period and a preliminary ecological analysis of this case is presented (Box 1). A total 151 

of 801 bats were captured representing 26 species morphologically identified using 152 

available field keys and checklists (Reid, 2009; Simmons, 2005). From these individuals 153 

we analyzed 466 parasites that were sampled from 18 host species and 260 guano 154 

samples from 21 species of which visual inspection led to 132 samples being classified as 155 

containing plant materials (seeds or fruit pulp) and the rest insect material. Some species 156 

are integrated into all trophic levels while others are only loosely associated, for example 157 

the sanguivore Desmodus rotundus did not produce a faecal sample so was retained in the 158 

dataset as a parasite host only.  159 

 160 

Method one: Sanger sequencing to resolve species ID of bats and parasites 161 
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The simplest way to integrate DNA data involves the use of Sanger sequencing to 162 

clarify species boundaries or to confirm and improve upon identifications made in the 163 

field. For bats and parasites we targeted the 5’ end of the mitochondrial cytochrome c 164 

oxidase subunit 1 gene (COI) as described by Hebert, Ratnasingham, & DeWaard, (2003) 165 

using full length (658 bp) DNA barcodes which provide taxonomic discrimination for 166 

most animal groups (Hebert, Cywinska, Ball, & DeWaard, 2003). For bats we used small 167 

tissue fragments from each individual captured and the “routine” method of DNA 168 

barcoding described in Ivanova, Clare, & Borisenko, (2012) and the mammal primer 169 

cocktail, PCR reagent mix and the thermocycler conditions “MamCOI” described in 170 

Tables S1, S2 and S3 of that publication. We edited sequences in CodonCode Aligner 171 

(CodonCode Corporation, Centerville, MA) and compared the resulting DNA barcodes to 172 

existing reference databases (Clare, Lim, Fenton, & Hebert, 2011) using a Neighbor-173 

Joining (NJ) tree to confirm they clustered with other representatives of their species 174 

assignment based on morphological inspection in the field (Figure S1). Sequences, 175 

collection information, and primer names are available in the Barcode of Life Data 176 

System (BOLD) (www.barcodinglife.org) (Ratnasingham & Hebert, 2007) project BCCR 177 

for each recovered sequence.  178 

For parasitic flies and mites, we extracted DNA from whole specimens using 179 

voucher-retention procedures (Porco, Rougerie, Deharveng, & Hebert, 2010). Our 180 

subsequent PCRs used a variety of primer combinations which are associated with 181 

individual records available in the project BCPB available in the BOLD website with 182 

corresponding primer sequences online at 183 

http://www.boldsystems.org/index.php/Public_Primer_PrimerSearch. Our PCR protocols 184 
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followed (Hebert et al., 2013) with post sequence analysis employing CodonCode 185 

Aligner (CodonCode Corporation, Centerville, MA). Unlike bats, field taxonomic 186 

designations were minimal and a full reference database of voucher-linked barcodes 187 

was not available. As a consequence, we employed the Barcode Identification 188 

Number (BIN) (Ratnasingham & Hebert, 2013) method of delimiting MOTUs in 189 

BOLD to identify species and compared this to terminal clusters in an NJ tree 190 

generated in BOLD. Three clusters were unassigned to any BIN because their 191 

sequence lengths were insufficient to provide a sequence match with high 192 

confidence; therefore, we designate these as taxa based on reciprocal monophyly of 193 

their sequences in an NJ tree (Figure S2). 194 

 195 

Method two: Sanger sequencing with multiple targets 196 

A more complex problem involves the analysis of material from one source when 197 

that material is degraded, making DNA analysis a preferred option, but where the taxa 198 

involved are difficult to resolve using this approach. In this case, the seeds defecated by 199 

bats may be identifiable from morphology, but fragmented seeds and digested fruit pulp 200 

are almost never identifiable morphologically. Consequently, plants whose seeds are too 201 

large to be swallowed are often excluded from food webs and dietary analyses unless 202 

direct observation confirms their consumption. Plants represent an additional hurdle as 203 

species delimitation by DNA often requires multiple genetic markers (CBOL plant 204 

working group, 2009).  205 

For all guano samples containing seeds, we separated three to five intact 206 

morphologically identical seeds from each sample. For samples containing only pulp or 207 
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pollen we separated approximately 10 mg of dried guano for DNA extraction. DNA 208 

isolated employed the NucleoSpin® 96 Plant II DNA isolation kit (Macherey-Nagel) 209 

following the manufacturer’s protocol with an extension of lysis to one hour. 210 

We amplified the rbcL and trnH-psbA regions using primers 211 

rbcLa_F/rbcLajf_634R and trnH/psbA (Fazekas et al., 2008; Kress, Wurdack, Zimmer, 212 

Weigt, & Janzen, 2005). We amplified matK using primers 1R_KIM/3F_KIM (Fazekas 213 

et al., 2008) and repeated the PCR for failed reactions using alternate primers: 214 

XF/3F_KIM (Fazekas et al., 2008; Ford et al., 2009). PCRs were carried out in 10µL 215 

volumes containing 2µL of 5X Phire® reaction buffer (Finnzymes), 0.05µL of 10mM 216 

dNTPs, 0.1µL of each 10µM primer, and 0.125µL of Phire® Hot Start II polymerase 217 

(Finnzymes) using the following protocol: initial denaturation at 98°C for 90s, 35 cycles 218 

of 98°C for 5s, 55–66°C for 10s (depending on primer set), 72°C for 7–10s (depending 219 

on region), followed by a final extension at 72°C for 60s and hold at 4°C (see primer 220 

references for additional details). 221 

We sequenced each amplicon bi-directionally with the same primers used for 222 

amplification in 11µL reaction volumes containing 0.5 µL of BigDye terminator mix 223 

(ABI), 2µL of 5X sequencing buffer, 1µL 10uM primer, and 0.5µL of undiluted PCR 224 

product using the following protocol: initial denaturation at 96ºC for 2min, 30 cycles of 225 

96ºC for 30s, 55ºC for 15s, 60ºC for 4min, followed by a hold at 4ºC. 226 

We assembled contigs and edited all sequences using Sequencher 4.8 (Gene 227 

Codes Corp, Ann Arbor, MI). We then ascertained the percentage similarity of all 228 

recovered sequences to available reference sequences in GenBank and BOLD, with the 229 

exception of the trnH-psbA region which was not searchable within BOLD.  230 
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Identification to known taxa is more complex as the different regions provide 231 

resolution at different taxonomic depths in different taxa. For example, rbcL typically 232 

provides generic level resolution (CBOL plant working group, 2009) (occasionally to 233 

species level), whereas the matK and trnH-psbA regions can provide resolution to species 234 

in ~60-90% of cases (depending on the taxa and geographic scope) (Braukmann, 235 

Kuzmina, Sills, Zakharov, & Hebert, 2017; Burgess et al., 2011; Lahaye et al., 2008). 236 

Due to incompleteness of the reference sequence databases for the flora, many sequences 237 

did not show 100% identity to any species in the reference database. We therefore 238 

assigned sequences to family, genus, or species depending on the region and percent 239 

identity using the following criteria. For rbcL, sequence matches with 99.75-100% 240 

identity were assigned to a genus, while matches with 99-99.75% identity were only 241 

placed to a family. For matK, matches with 100% identity were assigned to a species or a 242 

species cluster when more than one species in the reference set matched with 100% 243 

identity; matches with 99.0-99.9% identity were assigned to genus, while matches with 244 

98-99% identity were only assigned to a family. For the trnH-psbA region, most matched 245 

sequences ranged from 98-99% identity (no 100% matches were observed). The variable 246 

length of the region, the presence of repeated sequence motifs, and the small number of 247 

reference sequences complicated the interpretation of BLAST analysis with the GenBank 248 

dataset so most assignments were only made to a genus. For two genera, however, the 249 

trnH-psbA data corroborated the matK designation and enabled an increased level of 250 

resolution. Unique sequences for these samples were therefore designated with a number 251 

(in addition to genus) and treated as putative species. Species-level designation was also 252 
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accepted for sequences that matched a monotypic genus, and where sequences matched a 253 

genus of three species, two of which occur outside the study area. 254 

 255 

Method three: Metabarcoding of mixed unknowns 256 

When the material to be analysed is a mixed sample of unknown taxa (in this case 257 

arthropods), the entire assemblage must be targeted, followed by the use of 258 

bioinformatics tools to process the sequences and ascertain the number of taxa in each 259 

sample. In this case, we used DNA metabarcoding that targeted two segments of the COI 260 

DNA barcode region and processed these data using a series of bioinformatics tools in a 261 

well established analytical pipeline (e.g. Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; 262 

Clare, Symondson, & Fenton, 2014; Salinas-Ramos, Herrera Montalvo, León-Regagnon, 263 

Arrizabalaga-Escudero, & Clare, 2015). In brief, DNA was extracted using Qiagen Stool 264 

mini-kits (Qiagen CA) with modifications from (Clare et al., 2014; Zeale, Butlin, 265 

Barker, Lees, & Jones, 2011) and eluted in 35µL of molecular grade water. We 266 

targeted 157bp and 407bp amplicons of the DNA barcode region. PCRs were 267 

conducted in 20µl reactions containing 10µL of Qiagen multiplex master mix 268 

(Qiagen CA), 6µL of water, 1µL of each 10µM primer and 2µl of DNA. PCR reactions 269 

were: 95°C – 15 min; 50 cycles of 95°C - 30 sec, 52°C – 30 sec, 72°C – 30 sec (1 min 270 

for the 407bp region); 72°C – 10 min. Amplicons were visualized on 96 well 2% 271 

agarose pre-cast E-gels (Invitrogen, Life Technologies). For the 157bp region we 272 

used the Zeale primers (Zeale et al., 2011) which do not amplify bat DNA well, 273 

modified with the two adaptor molecular identification tags (MIDs) system to 274 

identify individual samples (Clare et al., 2014) without pooling. For the 407bp 275 
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region we used primers MLepF1 (GCTTTCCCACGAATAAATAATA) and 276 

RonMWASPdeg (GGWTCWCCWGATATAKCWTTTCC) combined in equal quantifies 277 

with LepR1 (TAAACTTCTGGATGTCCAAAAAATCA) and HCO2198 278 

(TAAACTTCAGGGTGACCAAAAAATCA). Sequence recovery is predicted to be lower 279 

with longer amplicons due to DNA degradation in digested material but longer reads 280 

maximize identification. For this region we extracted and PCR-amplified all samples 281 

independently but unlike the Zeal region we did not use (MIDs). This does not 282 

impact MOTU estimates, but we cannot assign individual sequences to their source 283 

bat so they were analysed as a pool and we do not generate networks from these 284 

data, just compare MOTU estimation from alternative regions.  285 

PCR products were pooled without normalization and 70µL of the pooled product 286 

was cleaned using the PCRClean DX kit (Aline Biosciences) for a double size selection 287 

purification protocol (Table S1). Purified PCR products were eluted in 36µL of water. 288 

The concentration was measured on the Qubit 2.0 spectrophotometer using a Qubit 289 

dsDNA HS Assay Kit (Invitrogen, Life Technologies). All products were normalized to 290 

1ng/µL prior to final library dilution. Sequencing was performed using the Ion PGM 291 

Template OT2 400 kit for template preparation according to manufacturer’s instructions, 292 

except for a ~2-3x recommended dilution with water (Table S2) and a 316 chip. After the 293 

chip check (prior to loading), the chip was flushed once with 100µL of 100% isopropanol 294 

and three times with 100µL of annealing buffer. 295 

 296 

Bioinformatics analysis 297 
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The sequences were processed using two analytical pipelines for comparison 298 

First, we employed well established tools in the Galaxy platform (Afgan et al., 2016). 299 

Reads from the 157bp Zeal region were separated by MID allowing 2 indels and 2 300 

mismatches using the barcode splitter tool. For both the 157bp and 407bp datasets 301 

primers, (MIDs for the 157bp region) and adaptors were removed using the clip tool 302 

(both tools from the FASTX tool kit (Assaf Gordon (2010). FASTQ/A short-reads pre-303 

processing tools. http://hannonlab.cshl.edu/fastx_toolkit/.). The resulting 304 

amplicons were filtered for length (157bp or 407bp ± 10bp) and dereplicated 305 

(Figure S3) using the Collapose tool (FASTX tool kit). We used custom scripts to 306 

remove singletons (Table S3).  307 

For the 157bp dataset we clustered the remaining haplotypes into MOTUs at 308 

90-97% similarity in QIIME using the pick_otu and uclust methods 309 

(http://qiime.sourceforge.net/). See Clare et al., (2016) and Flynn et al., (2015) for a 310 

discussion of MOTU thresholds. For each dataset we used a BLAST analysis 311 

interpreted in MEGAN (Huson, Mitra, Ruscheweyh, Weber, & Schuster, 2011) to 312 

filter out MOTUs that could not be reliably assigned to an arthropod order using a 313 

reference database of >600,000 COI sequences extracted from GenBank. Parameters 314 

in Megan were: Max Expected =0.01, Top Percent =10, Min Support Percent (0ff), 315 

Min Support =1, Min Complexity =0.2. Min Score =250. We tested a representative 316 

sequence from each MOTU in UCHIME as implemented in MOTHUR (Schloss et al., 317 

2009) to filter out MOTUs that were likely to be chimeras.  318 

For each MOTU dataset (90-97% clustering) we examined a BLAST 319 

assignment for MOTU representatives in MEGAN. If two or more reads were 320 
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assigned to the same species we considered MOTUs oversplit, rejected that 321 

threshold and tested the next most conservative option. We particularly considered 322 

assignments in the Lepidoptera because this order was heavily represented in the 323 

reference database. A QIIME threshold of 92 minimized MOTU oversplitting and this 324 

data set was used for network construction. The same analysis was performed for 325 

the 407bp dataset (MEGAN Min Score =500) but without network construction 326 

(Figure S4). 327 

We further queried the 157bp and 407bp datasets by comparing all sequences 328 

to the same reference sequence library and to a reference library provided by D. Janzen 329 

and W. Hallwachs generated from specimens (primarily Lepioptera) from the study area 330 

visualised in MEGAN (Figure S5 and S6) and with custom BLAST parsing scripts. This 331 

analysis extracts species-level identifications, but is biased towards identification of 332 

Lepidoptera, which dominate the reference database from the study location, and the 333 

accuracy of database curation (e.g., databases generally provide better resolution of 334 

larger, more charismatic, and economically important species).  335 

For a second comparative analytical approach we used a non-MOTU based 336 

method. Initial steps were similar with reads processed in Galaxy to split by MID and 337 

remove primers using cutadapt (https://cutadapt.readthedocs.io/en/stable/guide.html). 338 

FastQ files were then transferred to the mBRAVE platform (http://www.mbrave.net/) and 339 

processed using the parameters trim front 0bp, trim end 0bp (primers and adaptors had 340 

already been removed via cutadapt) trim length 500bp and filtering of MinQV 0qv, min 341 

length 147bp, and max bases with low or ultra low QV of 100% (to avoid specific quality 342 

filter parameters. We set a pre-clustering threshold of none, and ID distance threshold of 343 
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2% and left OTU thresholds as pre-set standards as we ignored MOTU analysis for this 344 

comparison. Chimera screening and dereplication was performed automatically by the 345 

mBRAVE platform. The resulting data is automatically compared to the BOLD system 346 

library for insects using the BIN approach to attempt to associate the reads with known 347 

BINs (this library contained 580, 824 reference sequences from 434, 878 known BINs, 348 

last updated 21, Oct. 2018). The resulting dataset was then converted to a matrix of bat 349 

species vs. associated prey BINs for further analysis.  350 

 351 

Network analysis:  352 

Using the data produced by all three approaches, we constructed a “network of 353 

networks” in Cheddar (Hudson et al., 2013) and Bipartite (Dormann et al., 2009) in R (R 354 

Development Core Team 2008) which represents all identified taxa or MOTUs. This 355 

network has differing levels of resolution based on the trophic level or taxonomic group. 356 

As the bats are, with a single exception, resolved to species level, they are fully 357 

quantified. The mites and flies that feed on them are identified by a Barcode 358 

Identification Number (BIN) (Ratnasingham & Hebert, 2013) as a proxy for species. This 359 

trophic level is also well resolved, but individual taxa are only partially quantified from 360 

each bat (finding all individual parasites is not practically possible). Similarly, the plant 361 

and arthropod prey levels are frequency-based as it is not possible to assess ingested plant 362 

biomass from seeds (plant ID) and metabarcoding data are poorly suited to quantify the 363 

biomass or abundance of species represented in the data (Deagle et al., 2018). The 364 

arthropods are represented by MOTUs (Floyd et al., 2002). In addition we produced a 365 

separate network of bats and prey employing the non-OTU based BIN association matrix.  366 
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 367 

Results 368 

Molecular Analysis 369 

We recovered DNA barcodes from 698 bats representing 24 species belonging to 370 

17 genera. The barcode results generally confirmed the field IDs, but could not 371 

distinguish Artibeus lituratus and Artibeus intermedius (Clare, Lim, Fenton, & Hebert, 372 

2011) leaving this node unresolved. However, other cases of taxonomic uncertainty were 373 

resolved. An unknown species of Carollia was identified as C. sowelli and members of 374 

two genera (Glossophaga, Micronycteris) gained species assignments. We suspect one 375 

genetically divergent specimen of Sturnira parvidens may be a sister taxon, but since this 376 

outcome could not be confirmed, it was retained as a single node (Figure S1). 377 

We recovered DNA barcodes from 445 of the 466 mites and flies found on 18 378 

host species. Parasite diversity varied from a single ectoparasite species per bat species (9 379 

cases) to nine ectoparasite species on A. jamaicensis. Among the seven bat families, the 380 

Emballonuridae, Mormoopidae and Phyllostomidae hosted the greatest diversity of 381 

parasite species whereas individual of the Noctilionidae were only associated with two 382 

ectoparasite species and individual Molossidae, Natalidae and Vespertilionidae were only 383 

parasitized by one ectoparasite species at a time. Two thirds of the 34 ectoparasite 384 

species, nine mites and 13 flies were only collected from one host species. The maximum 385 

number of host species inhabited by a mite or fly species was four.  386 

We recovered plant DNA from 112 guano samples from 12 species of bat. Guano 387 

from seven bats contained two seed morphotypes analysed separately, producing 119 388 

sequenced seed samples. We recovered rbcL from 102, matK from 81 and trnH-psbA 389 
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from 106 samples. Through comparison to GenBank and BOLD, 103 samples had 390 

sequences assigned to eight genera based on at least two of the three loci. Of these, 97 391 

seed samples had sequences assigned to a putative species and 16 samples had sequences 392 

placed to a genus based on a single gene region (Table S4). Comparison of rbcL 393 

sequences to GenBank often returned multiple BLAST hits with equivalent best scores. 394 

For example, top BLAST matches to Ficus or Solanum matched (100% or 99% identity 395 

respectively) multiple species within these genera. Although some sequences did not 396 

have an identical match on GenBank, all rbcL sequences matched with 100% identity to a 397 

sequence on BOLD, presumably reflecting the greater diversity of taxa present in the 398 

latter database. Similarly, all matK sequences matched with 100% identity to sequences 399 

on BOLD versus lower values on GenBank (94-100%). In some cases this allowed a 400 

more precise taxonomic assignment on BOLD, either to a species (e.g., Guazuma 401 

ulmifolia), or species cluster (e.g., Cecropia obtusifolia / peltata / insignis) versus 402 

assignment to a higher taxonomic rank (e.g., Urticaceae or Cecropia sp.; Ficus sp.). 403 

The GenBank BLAST of trnH-psbA sequences corroborated results obtained with 404 

rbcL and matK. In all cases, samples that yielded unique sequences for matK also had 405 

unique sequences for trnH-psbA. Although the limited taxonomic coverage for the latter 406 

gene region on GenBank often prevented an assignment to a known species, these 407 

sequence variants were treated as putative species. We also detected a probable case of 408 

taxonomic error in GenBank. Two trnH-psbA sequences from our samples showed high 409 

similarity (98% identity) to Cecropia obtusifolia, an unexpected result as several other 410 

sequences of almost twice the length showed nearly 100% similarity to several other 411 
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species of Cecropia on GenBank. Further investigation revealed that these sequences 412 

likely belong to a species of Vismia (Hypericaceae). 413 

We used HTS to recover two regions of the mitochondrial COI gene (157bp, and 414 

407bp, Tables S2-S3). The 157bp region has been used extensively (Alberdi et al., 2018; 415 

Zeale et al., 2011), and generated high recovery rates in the present study; it is fully 416 

analysed and generated 686 MOTU at the given parameters. Surprisingly, given the 417 

degradation induced by digestion, the 407bp region also showed high sequencing success. 418 

These two regions (Tables S5 and S6) identified a similar number of species (118 versus 419 

109 taxa for the 157bp and 407bp regions respectively) from all the same classes and 420 

orders of arthropods (excepting one mantid). Many of the same species, for example, 32 421 

species of Lepidoptera, were common in the two lists. However, there were also different 422 

species identified and in a number of cases identifications were improved using the 423 

longer target region. For example, sequences assigned to the genus Culex by the short 424 

region could be identified as Culex nigripalpus by the 407bp region. This outcome 425 

suggests these two regions may be complementary, adding confidence to the general 426 

diversity recovered and the specific taxa identified. However, the 407bp region pushes 427 

the current limits of amplicon size recovery on most HTS platforms, creating constraints 428 

on quality and recovery rate. Analysis with the BIN association method in mBRAVE 429 

identified 212 potential prey in the 157bp dataset.  430 

 431 

The impact of OTUs on network metrics 432 

 The most novel data type generated is the metabarcoded data that underlie the bat-433 

prey network because the prey nodes do not represent a particular taxonomic level or 434 
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taxon but a measure of prey genetic diversity. As a result, we investigated the impact of 435 

the key bioinformatics step – that of generating MOTUs – on the measurement of 436 

common network variables. Our data suggests that MOTU thresholds have a significant 437 

impact on standard network metrics as taxa are lumped or split to a greater or lesser 438 

extent. For most network metrics (Figure 4), an increase in the MOTU threshold (e.g., 439 

from 90% to 99%) split taxa so the resource level in our network increased in richness 440 

relative to the consumers with expected outcomes for each metric. In the case of links 441 

between species, connectance, nestedness, and vulnerability this variation can result in 442 

different relative rankings of these metrics between network types. For a complete 443 

analysis see Hemprich-Bennett et al., (2018). The effect is consistent but less predictable 444 

in measures of robustness (Figure 4), but in all cases we would have drawn the same 445 

conclusion. The BIN association network (Figure 5) contained substantially fewer prey 446 

nodes, which is to be expected, as the reference database for the area is minimal. Of 447 

these, 75% were Lepidoptera reflecting the substantial effort to create a Lepidoptera 448 

reference library for the site (see below). Interestingly, the actual measurements of 449 

network properties did not differ substantially (Table 1) which reflects the tremendous 450 

prey diversity represented by any method.  451 

 452 

Discussion 453 

We have demonstrated that three types of molecular data can be incorporated into 454 

network analysis. DNA can be used to confirm field identities (e.g. bats) or differentiate 455 

cryptic taxa (e.g. parasites) and to identify morphologically compromised material (e.g. 456 

plant pulp). DNA can also be used to generate complex and fundamentally novel data via 457 
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metabarcoding of mixed material (e.g. faeces) that can be analysed using MOTU or 458 

association with taxa in reference collections (e.g. the BIN method). While these data 459 

types can effectively generate rapid, scalable analyses of entire communities, there are 460 

challenges in both generating data and in the interpretation of network metrics to ensure 461 

biologically meaningful results (Table 2, Figure 4). 462 

 The incorporation of DNA analysis into networks presents both straightforward 463 

use cases and challenges. Confirming field IDs is a common molecular procedure 464 

(Borisenko, Lim, Ivanova, Hanner, & Hebert, 2008) and differentiating cryptic or 465 

taxonomically complex species is now routine (Smith, Woodley, Janzen, Hallwachs, & 466 

Hebert, 2006). These approaches have successfully been incorporated into network 467 

analysis (e.g., Wirta et al., 2014). However, the inclusion of metabarcoding results is 468 

more challenging and requires special consideration to integrate with network analysis. 469 

Metabarcoding is best applied to mixed faecal samples, gut contents (particularly liquid 470 

feeders e.g. Piñol, San Andrés, Clare, Mir, & Symondson, 2014) or pollen carried by 471 

generalists. However, it is challenging to generate reliable metabarcoded data (Alberdi et 472 

al., 2018; Arrizabalaga-Escudero et al., 2018; Atwell et al., 2010; King, Read, Traugott, 473 

& Symondson, 2008). The methods of interpreting individual dietary analyses using these 474 

data have been studied in several contexts (Clare et al., 2016; Flynn et al., 2015; 475 

Pompanon et al., 2012; Symondson, 2002). However, certain challenges are unique to the 476 

interpretation of food webs. Debate about the quantification of metabarcoding data 477 

centres largely around whether sequence recovery is linked to original biomass (Deagle et 478 

al., 2013; Nielsen et al., 2018; Pompanon et al., 2012). While this is possible in restricted 479 

scenarios (Bowles, Schulte, Tollit, Deagle, & Trites, 2011; Thomas et al., 2016), in many 480 
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cases frequency-based measures of interactions are more appropriate (Nielsen et al., 481 

2018). Frequency-based approaches are common in network ecology, for example, 482 

visitation frequency to specific flowers is a standard metric of the strength of mutualistic 483 

interactions (Memmott, Waser, & Price, 2004; Vázquez, Morris, & Jordano, 2005). 484 

However, incomplete quantification needs to be considered when weighted metrics are 485 

used (Kaiser-Bunbury, Muff, Memmott, Müller, & Caflisch, 2010), as rare and common 486 

interactions may be equally weighted (Clare, 2014) 487 

We suggest two alternative ways to incorporate metabarcoding data: using 488 

MOTUs and screening for taxonomic identities (e.g. BINs, similarity searches). The 489 

advantage of MOTUs is that all data are incorporated, both known and unknown taxa. 490 

However, by incorporating unknowns, one may inadvertently include non-target taxa 491 

(e.g. intestinal parasites or bacteria that are not screened out bioinformatically) that may 492 

generate nodes in networks unrelated to the behaviour under study or even false nodes 493 

from sequencing error (Clare et al., 2016; Flynn et al., 2015). In many systems, MOTUs 494 

collapse all prey levels into one “resource” level rather than revealing the complexity 495 

among trophic levels. For example, in our case some insects were primary consumers 496 

while others were predators, but all were treated as MOTU “prey” of an undifferentiated 497 

consumer level. Our data further suggest that the protocols used to differentiate MOTUs 498 

will themselves impact network metrics (Figure 4). The effect of node resolution has 499 

been discussed for decades with analyses showing that the impact of resolution on node, 500 

chain length and trophic levels significantly alters the observations of network properties 501 

(Brose, Ostling, Harrison, & Martinez, 2004). The situation is similar but not identical to 502 

the node resolution issue of employing MOTU. The impacts of the informatic steps used 503 
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to generate MOTU are only starting to be considered in ecological (Clare et al., 2016) or 504 

network analysis (Hemprich-Bennett et al., 2018). Any network that incorporates taxa 505 

with different levels of resolution (e.g. mixing genus and species designations) faces the 506 

same challenge (Hemprich-Bennett et al., 2018; Martinez, 1991). However MOTUs make 507 

it possible to easily re-analyse any dataset to empirically estimate that impact (Figure 4) 508 

and one potential advantage is that MOTUs generate a uniform level of resolution in a 509 

network. By their nature MOTUs represent equal and repeatable measures of biodiversity 510 

(Floyd et al., 2002), even if that level does not equate to a standard level of taxonomy. 511 

This may represent a powerful advantage in comparing network structure across systems, 512 

but presents a challenge in interpretation. For example unnamed MOTUs of unknown 513 

life-cycle and unknown affinity to each other provide limited information on the nature of 514 

the ecological interaction being measured beyond the general structure of the community. 515 

Similarly, if the numbers of nodes and their connections vary with analysis parameters 516 

(e.g. MOTU threshold) a network on its own holds little biological meaning. However, if 517 

the same methods are replicated a biological picture can emerge. For example, if the prey 518 

level undergoes a population crash, the genetic diversity and the MOTU number would 519 

similarly decline relative to the consumer level and fluctuations in parameters such as 520 

generality or nestedness would be measureable. The key then is to compare only analyses 521 

that employ the same methods from sequencing platform and field and lab protocol to 522 

informatics choices, just as sampling protocols and node resolution should be maintained 523 

in traditional networks being compared. This would be required to avoid context 524 

specificity. It is also necessary to pick specific metrics; for example network level metrics 525 
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may be more reliable than motif measurements (though see Hemprich-Bennett et al., 526 

2018). 527 

In contrast, similarity based searchers and BIN association type data provid better 528 

ability to determine exactly what is being included as a node (e.g. Figure 5) and yield 529 

greater ecological information about the type of interaction being measured, but will be 530 

biased by the contents of the reference library being used. In this case, the network 531 

metrics were similar enough that comparative conclusions about bat-prey/BIN, bat-532 

parasite and bat-plant networks would remain the same but some specific indicators 533 

change. For example, generality of the bat-BIN network was much lower reflecting the 534 

substantial reduction in prey nodes when relying exclusively on reference collections for 535 

the inclusion of a prey node. As reference collections improve this effect will diminish 536 

but it is a very important factor in relatively unexplored faunas.  537 

 538 

Three distinct data types 539 

 This paper has considered three distinct types of molecular data. The bat and plant 540 

identifications provide by DNA deliver nearly perfect resolution of the network. Such 541 

analysis generates data similar to that employed in traditional network ecology, the only 542 

major difference being the need for multi-locus data to obtain species-level resolution for 543 

plants. The parasite identifications were generated in a similar fashion to the bat data (one 544 

sequence per specimen), but with the crucial difference that current reference databases 545 

are very incomplete. As a consequence, we employed an alternative taxonomic system, 546 

the Barcode Index Number (BIN). The performance of the BIN system has been 547 

extensively tested (Ratnasingham & Hebert, 2013) and these studies have shown that it 548 
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delivers taxonomic resolution that is very close to traditional taxonomy. This data type 549 

(Table 2) has the advantage of making it possible to incorporate taxa which are 550 

apparently different species but where the current taxonomic system is incomplete. BIN 551 

analysis avoids unresolved nodes in network construction, but imposes a constraint that 552 

the identification is based on a measure of sequence differentiation observed in related 553 

taxa. Unlike other MOTU-generating methods, the BIN system is not based on strict a 554 

prior threshold delimitation but has been trained specifically using the large Sanger data 555 

sets for the DNA barcode region. In a test of 1400 species spanning birds, bees, fishes 556 

and Lepidoptera, the correspondence between species counts based on traditional 557 

taxonomy and BINs was very high (r2=0.99) and the actual mapping of species to BIN 558 

was approximately 90% (varying from 79%-97% between taxonomic group) 559 

(Ratnasingham & Hebert, 2013). Thus, when viewed from the context of DNA 560 

barcoding, BINs are a strong proxy for species. Because the definition of new BINs 561 

requires at least 500bp of sequence information from the COI barcode region, the short 562 

reads generated by most current HTS platforms cannot be used to delineate new BINs 563 

although they can be matched to existing BINs. Reflecting this constraint, there is a need 564 

for other methods of MOTU generation. For this third data type, data are most often 565 

analysed using MOTU without much (if any) taxonomic identification (e.g. Figure 1). 566 

This has the advantage of making it possible to analyzed mixed sources (e.g. stomach 567 

contents) but imposes unique problems for network ecology as it compresses trophic 568 

levels and dispenses with traditional taxonomy. While such analysis can generate data for 569 

a comparable interaction network model, it may not represent a trophic food web. In the 570 

study location, most arthropods remain undescribed despite decades of intense taxonomic 571 
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work. For example, some 400,000 arthropod species are estimated to be present in the 572 

ACG, but just 43,000 of these species have been barcoded over 14 years, revealing the 573 

scope of the taxonomic challenge (D.H. Janzen Pers. Comm.). In such locations, a 574 

complete food web or interaction network is impossible and restricting analysis to those 575 

species which can gain a full taxonomic designation (either by morphology or DNA) 576 

would introduce a substantial bias (Table S6). As a consequence our bat-BIN network 577 

contained substantially fewer nodes than our bat-prey network based on MOTU and 578 

would be less comparable to a network generated in an area with a different/reduced 579 

reference database. In such cases, a BIN or MOTU approach to generating a reference 580 

collection and then some sort of association or matching system is the only means of 581 

developing an ecosystem network model. The use of reference databases can to provide a 582 

familiar binomial designation on some nodes by similarity searchers or BIN association 583 

but imposes a significant bias on the data, which is then composed of “things found in 584 

databases” while novel BINs, and MOTUs do not impose this bias. On the other hand, 585 

novel BINs and MOTUs may include non-target taxa such as parasites, parasitoids, or 586 

taxa acquired via secondary predation. 587 

 588 

Comparison of 157 and 407bp datasets:  589 

Current consensus suggests that short reads are required to maximize MOTU 590 

and taxonomic ID recovery in digested material because of DNA degradation. 591 

Contrary to this expectation, the 407bp region had higher MOTU estimates and 592 

broader taxonomic coverage when evaluated using BLAST, suggesting it has less 593 

amplification bias and hence a complementary region for arthropod diversity 594 
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analysis. However, this conclusions need to be considered with caution. Longer 595 

reads should generate better taxon identification scores (more information) but will 596 

also generate high rates of low quality BLAST scores (local alignments). We 597 

modified the MEGAN Min Support value to partially compensate for this and to 598 

maximize assignment with most scores >98% similar to references. Taxonomic 599 

assignments of MOTUs (e.g. Table S5 and S6) should be considered for interest’s 600 

sake only in this dataset, particularly when a reference databases contains errors or 601 

skewed coverage. For this reason we considered only MOTUs for network analysis. 602 

Despite the promise of the 407bp region we used the 157bp region MOTUs for 603 

network analysis for two reasons. First, unlike the 157bp region, the 407bp region is 604 

new to NGS analysis and has not been evaluated for this purpose before. We 605 

consider it an interesting and potentially important tool but are hesitant to rely on it 606 

until further testing has been completed. Second, the 407bp region is long compared 607 

to the capacity of most high throughput sequencing platforms which limits its use 608 

and prevented us from employing MIDs to separate samples. Platform read length 609 

has generally fallen since the first highly popular Roche454 platform capable of 610 

1000bp reads to the now standard 250bp paired end reads of the MiSeq, thus while 611 

promising, the 407bp read will be analytically challenging. Newer platforms such as 612 

the SMRT sequencing platform (PACBIO, Pacific Biosciences) can overcome this 613 

problem allowing longer reads and thus higher taxonomic resolution assuming that 614 

digestion has not substantially compromised the DNA.  615 

 616 

DNA integration into network ecology. 617 
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 Despite challenges, incorporating DNA into networks has significant advantages. 618 

First, the technique does not rely on the need to observe interactions or the time 619 

consuming rearing practices used to establish many cases of parasitism (Wirta et al., 620 

2014). It can be applied to broken seeds, fruit pulp (e.g. Lim et al., 2017), single grains of 621 

pollen or morphologically destroyed material (e.g., digested remains) as well as entire 622 

specimens. Even traces of DNA (eDNA) with no observable material are amenable 623 

(Bohmann et al., 2014; Drinkwater, Clare, & Rossiter, In Review); for example, seeds 624 

dropped on the forest floor will have DNA of the plant, but also of the animal that 625 

dropped them from either saliva or cells from a digestive tract. González-Varo et al., 626 

(2014) have spectacularly demonstrated this method to capture bird DNA on the surface 627 

of dispersed seeds. Similarly, the detection of cryptic species and relationships represents 628 

a huge shift in the resolution of interaction networks. This was demonstrated by Wirta et 629 

al., (2014) who observed that DNA dramatically increased the number of identified 630 

interaction types and altered the perceived host specificity of host-parasitoid networks.  631 

A rapid DNA-based network biomonitoring tool will require us to understand: first, 632 

which data can be quantified (Deagle et al., 2018) and second, which metrics are reliable, 633 

in relative or absolute terms, to ensure we produce biologically meaningful outputs 634 

(Hemprich-Bennett et al., 2018, Clare et al. 2016, Ings et al. 2009, ). However, these 635 

datasets are already being demonstrated as powerful tools to resolve complex interaction 636 

networks quickly and in exquisite detail. Here we have generated a detailed network of 637 

networks in a complex tropical ecosystem incorporating different molecular data types as 638 

a case study. Ecologically, our data suggest a hitherto unrecognised keystone species and 639 

behavioural flexibility that may be critical to the success of insectivores (Box 1). 640 
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Methodologically, our findings support the approach, but also highlight the need for 641 

rigorous testing of methods. The rapidly advancing technology of this field means that 642 

such analyses will soon become a common and relatively inexpensive tool for 643 

understanding biostructure (McCann, 2007). While a fully resolved and taxonomically 644 

identified network will always be the goal, our analysis demonstrates the utility of these 645 

tools for network ecology and produces the first full network of networks resolved 646 

entirely by DNA. 647 
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Box 1: A preliminary analysis of a tropical bat community. 910 
 911 
Field Methods: All materials were acquired from past research at the field location 912 
and/or held in personal collections. All bats were caught over a six-week period 913 
from late May – early July of 2009 using mistnets or harptraps in Sector Santa Rosa 914 
of the Area de Conservación Guanacaste. Net locations were alternated nightly 915 
between the Bosque Humeda, La Casona and the Picnic area with an extra netting 916 
night at the Playa Naranjo targeting Noctilio. Each bat was identified and placed in a 917 
cloth bag for approximately one hour. Any guano produced was collected for 918 
taxonomic identification of prey items and the bats were released at the point of 919 
capture. Ectoparasites and wing biopsies were preserved in isopropyl alcohol; 920 
guano was frozen. Morphological identification of the ectoparasites to fly or mite 921 
was made in order to separte functional groups. Guano samples were screened for 922 
seed fragments and insect remains and classified as containing plant material or 923 
insect material. Two genera, Glossophaga and Micronycteris, were left with 924 
provisional species level ID.  Artibeus lituratus and A. intermedius, could not be 925 
distinguished in the field and are referred to as A. sp. 926 
 927 
Network Analysis: We visualised the interaction networks using Bipartite (Dormann 928 
et al., 2009) and Cheddar (Hudson et al., 2013) as implemented in R (R Development 929 
Core Team, 2015). We compared the structural metrics (links per species, 930 
asymmetry, connectance, nestedness, generality, and vulnerability) of each 931 
traditional bipartite sub-network (bat-parasite, bat-plant, bat-insect). We evaluated 932 
the robustness of each network and modelled the effects of species loss and 933 
restoration within the networks. We employed three extinction models: species 934 
removed randomly (null model), species removed from most to least connected (Rd-935 
worst case scenario) (Kaiser-Bunbury, Muff, Memmott, Müller, & Caflisch, 2010) and 936 
species removed from least to most frequently detected (Ra-best case scenario). 937 
Species lose connections within the network when their hosts, prey, predators, or 938 
mutualists are eliminated. From each of our three component networks (parasitism, 939 
mutualism, predation) we measured network robustness (Kaiser-Bunbury et al., 940 
2010; Memmott, Waser, & Price, 2004). We then modelled a restoration scenario 941 
where bat species are re-introduced from greatest to least connected (best-case) 942 
and assessed the proportion of links restored to the structure. To pinpoint possible 943 
keystone species, we examined the role of each bat species within the entire 944 
network of network using betweenness and closeness centrality scores (Martín 945 
González, Dalsgaard, & Olesen, 2010) in igraph (Csardi and Nepusz 2006). For 946 
simplicity, when individual networks are depicted, we present bats on the top rather 947 
than arranging these by trophic level (bats occupy multiple trophic levels making 948 
any other display exceedingly complex). Finally, we analysed the impact of OTU 949 
clustering thresholds of insects in the bat-prey network on the measurement of 950 
these metrics considering clustering thresholds from 90-99%.  951 
 952 
A network of networks: Using these data, we present the first “network of networks” 953 
where all underlying data have been generated using a molecular approach (Figure 954 
1a). We evaluated the structural metrics (Table 1) and robustness (Figure 2) of 955 
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traditional sub-networks (Figure 1bcd) and modelled the effects of bat species loss 956 
on parasite persistence (Figure 2a), plant mutualism (Figure 2b), predation (Figure 957 
2c), and secondary extinction of bats from prey loss (Figure 2d). Under all models, 958 
parasite networks were less robust (Ra=0.69/Rd=0.36) and mutualistic 959 
relationships were only slightly more robust (Ra=0.74/Rd=0.4). However, 960 
arthropods responded differently to models of extinction: a high proportion of prey 961 
face predation, even when the highest-ranking bat species by abundance are 962 
eliminated (Ra=0.86), while, conversely, arthropods experience a tremendous 963 
release from predation when bat species go extinct by connectance (Rd=0.28). 964 
Insectivorous bats appear robust to the loss of prey species (Ra=0.998/Rd=0.85). 965 
Even under the worst-case scenario, the first bat species is not lost until 32% of 966 
arthropods are extinct, and even when >90% of arthropods are lost, >70% of bat 967 
species remain in the network if prey biomass was sufficient (Figure 2d). Only G. 968 
soricina showed significant trophic flexibility operating in both a mutualistic and 969 
strong predatory role (high centrality scores, Supplemental Information Table S8). 970 
This is also evident in our restoration ecology model (Figure 3) where the third bat 971 
returned based on connectance is G. soricina introducing parasites, insects, and 972 
plants at the same time. 973 
 974 
A snap shot of a bat community: Even considering the variability of metrics across 975 
multiple MOTU resolutions (Figure 4), the generality of bat-prey networks is 976 
extreme compared to the bat-parasite and bat-plant networks. This significantly 977 
impacts on our understanding of robustness in this system and may provide 978 
evidence in the diversity vs. stability debate (McCann, 2000). The data suggest 979 
extraordinary behavioural flexibility of insectivorous bats and their lack of reliance 980 
on specific prey. While there is evidence for resource specialisation (e.g. the 981 
preference for beetles in Eptesicus (Clare, Symondson, & Fenton, 2014) or moths in 982 
sibling rhinolophids (Arrizabalaga-Escudero et al., 2018)) most studies that have 983 
employed molecular techniques have observed very generalist flexible behaviour in 984 
foraging (Salinas-Ramos, Herrera Montalvo, León-Regagnon, Arrizabalaga-Escudero, 985 
& Clare, 2015; Sedlock, Krüger, & Clare, 2014) though none have examined a 986 
community on this scale. Second, perhaps the most interesting observation is the 987 
position of the bat Glossophaga soricina in the network. Clare, Goerlitz, et al., (2013) 988 
used a molecular dietary analysis to identify a novel hunting strategy that permits 989 
this supposed “nectar bat” to sneak up on insects. The bats’ echolocation calls are 990 
low enough in intensity that prey with ears do not detect the approaching threat in 991 
time to evade it (Clare, Goerlitz, et al., 2013). Our network analysis suggests that 992 
insectivory in Glossophaga is not a rare behaviour but rather, during the period of 993 
this study, G. soricina was the third best-connected insectivore in the community in 994 
addition to its role in pollination and, seed dispersal and as a parasite host. Its 995 
diverse functional roles make it a probable keystone species with very high 996 
betweeness and closeness centrality (Supplemental Information Table S8). This 997 
distinguishes it as the only bat occupying all these functional roles in the network 998 
and thus a species of special conservation interest. In contrast some species are only 999 
very tangentially associated with this network. For example Desmodus rotundus, the 1000 
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vampire bat, is connected to only one parasite and thus forms its own module of 1001 
interactions unconnected to the rest of the community. 1002 
 1003 

 1004 

Data Accessibility: All molecular data can be found in Dryad 1005 

https://doi.org/10.5061/dryad.0k90c0v and BOLD projects (BCCR Bats of Costa Rica 1006 

ACG & BCPB Parasites of tropical bats) also contain sequences and collection metadata 1007 

and associated GenBank accessions. 1008 

 1009 

 1010 
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 1014 

Tables: 1015 
 1016 
Table 1: Structure of the sub-networks  1017 

 Links per species Asymmetry  

(A) 

Connectance 

(C) 

Nestedness 

(N) 

Generality 

(G)Ψ 

Vulnerability 

(V) Ψ 

Bat-Parasite 1.02 -0.31* 0.09 12.60 1.95* 1.32* 

Bat-Plant 1.37 -0.33 0.21 26.25 2.74 1.80 

Bat-Prey 1.70 -0.97 0.16 14.11 76.72 1.52 

Bat-BIN 1.17 -0.91 0.12 14.79 41.25 1.37 

 1018 
*see Supplemental Information for an interpretation of positive vs. negative values and structural arrangement 1019 
Ψ unweight following (11) but see Supplemental Information for the appropriateness of unweight measures 1020 
 1021 
 1022 
  1023 
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Table 2: A comparison of three data types for network analysis  1024 

 Data Type Taxonomic 

Resolution 

Application Required 

References 

Advantages Disadvantages Network 

Implications 

Resolving ID  

with DNA  

-The plant 

network 

A few 

sequences per 

individual 

Species Identification of 

fragments 

Complete 

database  

-can deal with forensic trace 

material 

-produces traditional networks 

-minimal taxonomic expertise 

- requires molecular 

expertise 

- requires a well resolved 

database 

-Produces a network equivalent 

to a traditional food web 

Resolving species 

when taxonomy is 

not known 

- The parasite 

network 

A few 

sequences per 

individual 

Species but 

without names 

Identification of taxa 

where taxonomy 

may be incomplete 

or cryptic 

Incomplete 

database 

-can deal with forensic trace 

material 

-can include species with 

incomplete taxonomic 
investigation 

- resolves cryptic taxa 

requires molecular expertise 

-may not encourage 
taxonomic work 

-Similar to a traditional food 

web, but may collapse trophic 

levels where ID is not clear 

Using MOTUs 

without a 

taxonomic unit 

- The arthropod 

prey network 

Millions of 

sequences per 

sample 

Arbitrary but 

comparable 

units 

Rapid surveys where 

identification is not 

possible  

No database 

required 

 

-can deal with forensic trace 

material  

-may include both known and 

unknown data (MOTUs) 

-can be used in any context 
regardless of taxonomic 

knowledge 

-rapid and MOTUs are 
mathematically and genetically 

identical yielding perfect 

resolution 
-quantification is controversial* 

- requires molecular 

expertise  

-does not represent real taxa 

-may include error- prone 
data 

-actual MOTU numbers are 

meaningless 
-may be biased by primers 

or other protocol choices 

-Fundamentally different 

MOTUs are not species and 

likely collapse trophic levels but 

allow rapid structural 
comparisons  

-Node numbers are meaningless 

* See a review by Deagle et al. 2018.  1025 
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Figures: 1026 
 1027 

 1028 
Figure 1: Species’ interaction networks. The network of networks (A) displays interaction 1029 
structure organised by behavioural ecology (rather than traditional trophic structure). The 1030 
visualization of this network is not presented as standard trophic levels for two reasons. 1031 
First, the arthropod prey represent multiple trophic levels themselves which cannot be 1032 
differentiated. Second, the density of connections make links to plants impossible to 1033 
distinguish if the plants are presented as the lowest trophic level. In this case the network 1034 
has been structured to depict function rather than trophic levels. For example, arachnid 1035 
mites of bats are parasites that spend their entire life cycle on their host (Christe, Arlettaz, 1036 
& Vogel, 2000) which restricts their dispersal so horizontal transmission primarily occurs 1037 
via host-to-host contact. Therefore, mites and their hosts are usually regarded as the 1038 
product of long co-evolution. In comparison, parasitic Diptera (flies) can be highly 1039 
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mobile, and often spend part of their life cycle apart from their host (Fritz, 1983). 1040 
Because of such distinct life history differences alternative hypotheses of function can be 1041 
advanced. We depict them as separate functional groups (A) and in their traditional 1042 
parasite role (C). N-values represent the number of taxa detected. Semi-quantified 1043 
individual trophic networks (B-D) display traditional trophic organisations (though for 1044 
simplicity of comparison bats are always presented on top). Detection frequency data for 1045 
each species is given by the width of the block proportional to species’ frequency in the 1046 
network. Colours indicate behavioural role from A. See Supplemental Information for a 1047 
discussion of visualization orientation and Supplemental tables S4 and S8 for matrices of 1048 
parasite, plant and bat taxonomic identifications.  1049 
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 1050 
Figure 2: The robustness of interaction network structure to the sequential removal of 1051 
species under three extinction models. The number of bat species removed has an 1052 
extreme impact on the loss of parasites (A), while plants are slightly more resilient (B). 1053 
The proportion of arthropods released from predation (C) is strongly dependent on the 1054 
model of extinction, while insectivorous bats are extremely resilient to the loss of prey 1055 
under any model (D).  1056 
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 1057 
Figure 3: A restoration ecology model showing the proportion of links restored if bats are 1058 
introduced to the ecosystem in order of connectance (best case scenario). With the 1059 
restoration of only the three most strongly connected species (Pteronotus 1060 
mesoamericanus, Balantiopteryx plicata and Glossophaga soricina), 72% of arthropod 1061 
species are under predation, 24% of parasite species have a host, and 14% of plant 1062 
species are visited. See Clare et al., (2014) for a discussion of trophic roles of 1063 
Glossophaga. 1064 
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1066 
Figure 4: Metabarcode data is a fundamentally new type of data for network ecology. 1067 
Nodes in metabarcoding normally do not represent a specific taxon or taxonomic level, 1068 
but are molecular operational taxonomic units (MOTUs) best described as taxa that are 1069 
defined by being genetically congruent pools of diversity. They are defined by a series of 1070 
bioinformatics steps with the ultimate decision dependent on the threshold employed for 1071 
splitting vs. lumping sequences into a MOTU (nodes in our networks). As the MOTU 1072 
threshold changes, taxa are lumped or split to a greater or lesser extent. For most network 1073 
metrics (top two rows), this has a predictable effect as the resource level in our networks 1074 
increases in richness relative to the consumers. The same pattern is evident but less 1075 
predictable in measures of robustness (bottom row). For a complete analysis see 1076 
Hemprich-Bennett et al. (2018). 1077 
  1078 



46 
  

1079 
Figure 5: Species’ interaction networks for bats and prey identified using the BIN 1080 
association method employed on the mBRAVE platform. See table S9 for a matrix of 1081 
bats and BIN based nodes with full taxonomic identifications. 1082 
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