3,094 research outputs found

    A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons

    Get PDF
    The three-dimensional morphology and surface area of organisms such as reef-building corals is central to their biology. Consequently, being able to detect and measure this aspect of corals is critical to understanding their interactions with the surrounding environment. This study explores six different methods of three-dimensional shape and surface area measurements using the range of morphology associated with the Scleractinian corals: Goniopora tenuidens, Acropora intermedia, and Porites cylindrica. Wax dipping; foil wrapping; multi-station convergent photogrammetry that used the naturally occurring optical texture for conjugate point matching; stereo photogrammetry that used projected light to provide optical texture; a handheld laser scanner that employed two cameras and a structured light source; and X-ray computer tomography (CT) scanning were applied to each coral skeleton to determine the spatial resolution of surface detection as well as the accuracy of surface area estimate of each method. Compared with X-ray CT wax dipping provided the best estimate of the surface area of coral skeletons that had external corallites, regardless of morphological complexity. Foil wrapping consistently showed a large degree of error on all coral morphologies. The photogrammetry and laser-scanning solutions were effective only on corals with simple morphologies. The two techniques that used projected lighting were both subject to skeletal light scattering, caused by both gross morphology and meso-coral architecture and which degraded signal triangulation, but otherwise provided solutions with good spatial resolution. X-ray CT scanning provided the highest resolution surface area estimates, detecting surface features smaller than 1000 mu m(2)

    Fungi in a Warmer World - Fungal diversity from the Peak Warming of the Miocene Climate Optimum as Recorded in the Latah Formation, Clarkia, Idaho, USA

    Get PDF
    Microfungi are a vital part of ecosystems as they help with key processes, such as carbon and nutrient cycling, especially through the actions of mycorrhizal and saprotrophic members (Nuñez Otaño et al., 2015, 2021; Willis et al., 2018). Microfungi can also be good indicators of plant biodiversity in an area because many fungal taxa are host-specific (Rutten et al., 2021; Francioli et al., 2021; Hu et al., 2021; Wijayawardene et al., 2022 ). Despite being crucial components in ecosystems, they are often overlooked. In the fossil record, microfungi have a high preservaon rate and they are often preserved close to the original substrate they were deposited in. This makes them an important proxy for understanding local past ecological and climatological conditions (Romero et al., 2021, O’Keefe et al., 2017). The Fungi in a Warmer World project seeks to use fossil fungal assemblages to study changes in biodiversity during the Miocene Climate Opmum (MCO), a period of peak warming that closely mirrors current and projected warming trends (Steinthorsdotter et al., 2021). The current atmospheric CO2 concentraon is around 420 ppm but is rapidly approaching the MCO average of 450-550 ppm (Steinthorsdotter et al., 2021).https://scholarworks.moreheadstate.edu/celebration_posters_2022/1045/thumbnail.jp

    Geometry of the extreme Kerr black holes

    Full text link
    Geometrical properties of the extreme Kerr black holes in the topological sectors of nonextreme and extreme configurations are studied. We find that the Euler characteristic plays an essential role to distinguish these two kinds of extreme black holes. The relationship between the geometrical properties and the intrinsic thermodynamics are investigated.Comment: Latex version, 10 page

    M-Theory solutions with AdS factors

    Get PDF
    Solutions of D=7 maximal gauged supergravity are constructed with metrics that are a product of a n-dimensional anti-de Sitter (AdS) space, with n=2,3,4,5, and certain Einstein manifolds. The gauge fields have the same form as in the recently constructed solutions describing the near-horizon limits of M5-branes wrapping supersymmetric cycles. The new solutions do not preserve any supersymmetry and can be uplifted to obtain new solutions of D=11 supergravity, which are warped and twisted products of the D=7 metric with a squashed four-sphere. Some aspects of the stability of the solutions are discussed.Comment: 30 pages. References adde

    Band-structure trend in hole-doped cuprates and correlation with Tcmax

    Full text link
    By calculation and analysis of the bare conduction bands in a large number of hole-doped high-temperature superconductors, we have identified the energy of the so-called axial-orbital as the essential, material-dependent parameter. It is uniquely related to the range of the intra-layer hopping. It controls the Cu 4s-character, influences the perpendicular hopping, and correlates with the observed Tc at optimal doping. We explain its dependence on chemical composition and structure, and present a generic tight-binding model.Comment: 5 pages, Latex, 5 eps figure

    The postulates of gravitational thermodynamics

    Get PDF
    The general principles and logical structure of a thermodynamic formalism that incorporates strongly self-gravitating systems are presented. This framework generalizes and simplifies the formulation of thermodynamics developed by Callen. The definition of extensive variables, the homogeneity properties of intensive parameters, and the fundamental problem of gravitational thermodynamics are discussed in detail. In particular, extensive parameters include quasilocal quantities and are naturally incorporated into a set of basic general postulates for thermodynamics. These include additivity of entropies (Massieu functions) and the generalized second law. Fundamental equations are no longer homogeneous first-order functions of their extensive variables. It is shown that the postulates lead to a formal resolution of the fundamental problem despite non-additivity of extensive parameters and thermodynamic potentials. Therefore, all the results of (gravitational) thermodynamics are an outgrowth of these postulates. The origin and nature of the differences with ordinary thermodynamics are analyzed. Consequences of the formalism include the (spatially) inhomogeneous character of thermodynamic equilibrium states, a reformulation of the Euler equation, and the absence of a Gibbs-Duhem relation.Comment: 28 pages, Revtex, no figures. An important sentence and several minor corrections included. To appear in Physical Review

    One dimensional Coulomb-like problem in deformed space with minimal length

    Full text link
    Spectrum and eigenfunctions in the momentum representation for 1D Coulomb potential with deformed Heisenberg algebra leading to minimal length are found exactly. It is shown that correction due to the deformation is proportional to square root of the deformation parameter. We obtain the same spectrum using Bohr-Sommerfeld quantization condition.Comment: 11 pages, typos corrected, references adde

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200

    Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory

    Full text link
    In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200
    • …
    corecore