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INTRODUCTION

Microfungi are a vital part of ecosystems as they help with key processes, such as
carbon and nutrient cycling, especially through the actions of mycorrhizal and
saprotrophic members (Nufez Otano et al., 2015, 2021; Willis et al., 2018).
Microfungi can also be good indicators of plant biodiversity in an area because
many fungal taxa are host-specific (Rutten et al., 2021; Francioli et al., 2021; Hu et
al., 2021; Wijayawardene et al., 2022 ). Despite being crucial components in
ecosystems, they are often overlooked. In the fossil record, microfungi have a high
preservation rate and they are often preserved close to the original substrate they
were deposited in. This makes them an important proxy for understanding local
past ecological and climatological conditions (Romero et al., 2021, O’Keefe et al,,
2017).

The Fungi in a Warmer World project seeks to use fossil fungal assemblages to
study changes in biodiversity during the Miocene Climate Optimum (MCO), a

period of peak warming that closely mirrors current and projected warming trends

(Steinthorsdottier et al., 2021). The current atmospheric CO2 concentration is
around 420 ppm but is rapidly approaching the MCO average of 450-550 ppm
(Steinthorsdottier et al., 2021).

This study is looking at sediments from just below ash layer RA3 through 2m
above, corresponding to pollen zones 1-3 of Pipis and Rember (2013) from the
upper portion of the Latah Formation Clarkia lagerstatten exposed at locality P-37
near Fernwood, Idaho (Figure 1) . This poster is the first step in a focused study of
sediments deposited during peak MCO warming (15.31Ma). Previous studies have
been conducted in the area and show that the section is organic rich and contains
exceptionally well-preserved plant fossils and abundant palynomorphs (Pipis et
al., 2012). These studies also suggested that the lake was surrounded by a warm
to warm-temperate forest similar to forests in the southeastern United States and
eastern China today (Smiley and Rember, 198543, b). A few studies have been done
over the fungi present on leaves from the deposit, but preserved fungal
biodiversity data is exceptionally scarce (Sherwood-Pike, 1985, Sherwood-Pike and
Grey, 1988).

This study seeks to fill a gap in knowledge about Miocene fungal assemblages
from the Northwestern United States. Results from this study will be part of a
global fungal distribution dataset that will be used for climate modeling and to
predict how fungi will react to future warming trends.

STUDY AREA

The Clarkia lagerstatten is part of the upper Latah Formation in Idaho (Figure 2).
The sediments in this exposure of lacustrine sediments are primarily clay and silt
with layers of ash (Steinthorsdottier et al., 2021). The sample site is located at the
P-37 locality with a focus on sediments just below through 2m above ash bed RA-3
(Figure 2) . This site was chosen based on the abundance of paleobotanical material
(leaf fossils) (Smiley and Rember, 19853, b, 1981, Smiley et al, 1975) and also a
preliminary study on pollen a
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Figure n is exposed at two main sites, P33 near Clarkia, ID, and P37 in

Rural Fernwood, ID. This study concentrates on sediments exposed in the upper part of site P37.
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Figure 2. Stratigraphy and Exposure of the Study
Section
Ash RA 3 is the third ash deposit from the top of
the composite stratigraphic section from the
upper Latah Formation “Clarkia” sections (a). It is
exposed in the Pipis (2012) study section at P33,
known as “Stefanie’s Pit,” which was re-excavated
4 | in July 2021 and re-sampled for study (b & c). This
section consists lacustrine sediments underlying
an airfall volcanic ash and re-worked ash material
in overlying lacustrine sediments (a). Samples
were obtained from the pit (d) and overlying la-
custrine sediments (e). Stratigraphy adapted from
Pipis (2012).
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METHODS

The samples were processed using acid-free methods (O’Keefe and Eble (2012) as
modified by Pound et al. (2021)). The residues were then mounted in PVA. A total of
13 samples were analyzed using brightfield microscopy at 1000x magnification on
Leica DM750P microscopes with integral ICC50W cameras and Leica Application
Suite® software. Images presented are z-stacked composites produced using Helicon
Focus® software; this method makes fine details easier to interpret. Results from the
first 5 analyzed samples are presented here, with the caveat that identifications using
primary literature on extant fungi are still underway.

CONCLUSIONS

Although these results are very preliminary, the biodiversity captured by the first
five samples is lower than expected. In the analyzed samples amerospores are
both abundant and have high diversity. There is also a relative abundance of
didymospores present along with a few simple phragmospores and bubilspores.

Future work includes documenting the fungal diversity in the remaining samples
and identifying the fungal taxa present. These fossil fungal taxa will be correlated
with extant fungal species in order to help create a database of fungal ecological
and climatological tolerances for the upper Latah Formation. This database will be
used by Northumbria University-based project members for paleoclimate and
future climate modeling.
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