9 research outputs found

    Farm-Level Risk Factors for Fish-Borne Zoonotic Trematode Infection in Integrated Small-Scale Fish Farms in Northern Vietnam

    Get PDF
    BACKGROUND: Northern Vietnam is an endemic region for fish-borne zoonotic trematodes (FZT), including liver and intestinal flukes. Humans acquire the FZT infection by eating raw or inadequately cooked fish. The production of FZT-free fish in aquaculture is a key component in establishing a sustainable program to prevent and control the FZT transmission to humans. Interventions in aquaculture should be based on knowledge of the main risk factors associated with FZT transmission. METHODOLOGY/PRINCIPAL FINDINGS: A longitudinal study was carried out from June 2006 to May 2007 in Nam Dinh province, Red River Delta to investigate the development and risk factors of FZT infections in freshwater cultured fish. A total of 3820 fish were sampled six times at two-month intervals from 96 fish farms. Logistic analysis with repeated measurements was used to evaluate potential risk factors based on information collected through questionnaire interviews with 61 fish farm owners. The results showed that the FZT infections significantly increased from first sampling in June to July 2006 (65%) to sixth sampling in April to May, 2007 (76%). The liver fluke, Clonorchis sinensis and different zoonotic intestinal flukes including Haplochis pumilio, H. taichui, H. yokogawai, Centrocestus formosanus and Procerovum varium were found in sampled fish. Duration of fish cultured (sampling times), mebendazole drug self-medication of household members, presence of snails in the pond, and feeding fish with green vegetation collected outside fish farms all had a significant effect on the development of FZT prevalence in the fish. CONCLUSIONS/SIGNIFICANCE: The FZT prevalence in fish increased by 11 percentage points during a one-year culture period and the risk factors for the development of infection were identified. Results also highlight that the young fish are already highly infected when stocked into the grow-out systems. This knowledge should be incorporated into control programs of FZT transmission in integrated small-scale aquaculture nursery and grow-out systems in Vietnam

    Age-seroprevalence curves for the multi-strain structure of influenza A virus

    Get PDF
    The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% - 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% - 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens

    Structure of general-population antibody titer distributions to influenza A virus

    No full text
    Seroepidemiological studies aim to understand population-level exposure and immunity to infectious diseases. Their results are normally presented as binary outcomes describing the presence or absence of pathogen-specific antibody, despite the fact that many assays measure continuous quantities. A population's natural distribution of antibody titers to an endemic infectious disease may include information on multiple serological states - naiveté, recent infection, non-recent infection, childhood infection - depending on the disease in question and the acquisition and waning patterns of immunity. In this study, we investigate 20,152 general-population serum samples from southern Vietnam collected between 2009 and 2013 from which we report antibody titers to the influenza virus HA1 protein using a continuous titer measurement from a protein microarray assay. We describe the distributions of antibody titers to subtypes 2009 H1N1 and H3N2. Using a model selection approach to fit mixture distributions, we show that 2009 H1N1 antibody titers fall into four titer subgroups and that H3N2 titers fall into three subgroups. For H1N1, our interpretation is that the two highest-titer subgroups correspond to recent and historical infection, which is consistent with 2009 pandemic attack rates. Similar interpretations are available for H3N2, but right-censoring of titers makes these interpretations difficult to validate

    Structure of general-population antibody titer distributions to influenza A virus

    Get PDF
    Seroepidemiological studies aim to understand population-level exposure and immunity to infectious diseases. Their results are normally presented as binary outcomes describing the presence or absence of pathogen-specific antibody, despite the fact that many assays measure continuous quantities. A population's natural distribution of antibody titers to an endemic infectious disease may include information on multiple serological states - naiveté, recent infection, non-recent infection, childhood infection - depending on the disease in question and the acquisition and waning patterns of immunity. In this study, we investigate 20,152 general-population serum samples from southern Vietnam collected between 2009 and 2013 from which we report antibody titers to the influenza virus HA1 protein using a continuous titer measurement from a protein microarray assay. We describe the distributions of antibody titers to subtypes 2009 H1N1 and H3N2. Using a model selection approach to fit mixture distributions, we show that 2009 H1N1 antibody titers fall into four titer subgroups and that H3N2 titers fall into three subgroups. For H1N1, our interpretation is that the two highest-titer subgroups correspond to recent and historical infection, which is consistent with 2009 pandemic attack rates. Similar interpretations are available for H3N2, but right-censoring of titers makes these interpretations difficult to validate

    Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam [version 1; referees: 2 approved]

    No full text
    Background: Acute respiratory infections (ARI) are among the leading causes of hospitalization in children ≤5 years old. Rapid diagnostics of viral pathogens is essential to avoid unnecessary antibiotic treatment, thereby slowing down antibiotic-resistance. We evaluated the diagnostic performance of the Luminex xTAG Respiratory Viral Panel FAST v2 against viral specific PCR as reference assays for ARI in Vietnam. Methods: Four hundred and forty two nose and throat swabs were collected in viral transport medium, and were tested with Luminex xTAG Respiratory Viral Panel FAST v2. Multiplex RT-PCR and single RT-PCR were used as references. Results: Overall, viral pathogens were detected in a total count of 270/294 (91.8%, 95% CI 88.1-94.7) by the Luminex among reference assays, whilst 112/6336 (1.8%, 95% CI, 1.4-2.1) of pathogens were detected by the Luminex, but not by reference assays. Frequency of pathogens detected by Luminex and reference assays was 379 and 292, respectively. The diagnostic yield was 66.7% (295/442, 95%CI 62.1-71.1%) for the Luminex assay and 54.1% (239/442, 95% CI, 49.3-58.8%) for reference assays. The Luminex kit had higher yields for all viruses except influenza B virus, respiratory syncytial virus, and human bocavirus. High agreements between both methods [mean (range): 0.91 (0.83-1.00)] were found for 10/15 viral agents. Conclusions: The Luminex assay is a high throughput multiplex platform for rapid detection of common viral pathogens causing ARI. Although the current high cost may prevent Luminex assays from being widely used, especially in limited resource settings where ARI are felt most, its introduction in clinical diagnostics may help reduce unnecessary use of antibiotic prescription
    corecore