8 research outputs found
Genetic analysis of the orf7 gene in vietnamese porcine reproductive and respiratory syndrome virus (prrsv)
Introgression and isolation contributed to the development of Hungarian Mangalica pigs from a particular European ancient bloodline
Polymorphisms of candidate genes associated with meat quality and disease resistance in indigenous and exotic pig breeds of Vietnam
The objectives of this study were to analyse genotype distribution and sequence variations of candidate genes putatively associated with meat quality and disease resistance in exotic and indigenous Vietnamese pig breeds. For this purpose, 340 pigs from four indigenous and two exotic breeds were included in the analysis of the polymorphisms of the heart fatty-acid-binding protein (H-FABP), alpha 1 fucosyltransferase (FUT1), and bactericidal/permeability-increasing protein (BPI) genes by the sequencing and PCR-RFLP methods. For H-FABP, 17 single nucleotide polymorphisms (SNPs) were detected in indigenous pig breeds by direct sequencing of a fragment at intron 2 of the H-FABP gene. The mutation T1556C created a new restriction site for the enzyme MspI, which gave rise to new allelic variants in three indigenous pig breeds. In indigenous breeds, the frequency of the favourable alleles a and d at MspI and HaeIII sites of the H-FABP gene were low. Meanwhile, the frequency of the d allele at the HaeIII site in exotic breeds was significantly higher than those of indigenous pig breeds. No mutation was found in the RFLP-fragment of the FUT1 gene of four indigenous pig breeds by sequencing, while in the BPI gene two mutations were detected in the Tap Na breed. The resistant alleles of the FUT1 and BPI genes in the exotic breeds were significantly higher than those of indigenous pig breeds. Among the indigenous pig breeds, the Tap Na breed possessed a higher frequency of the resistant allele G of BPI gene than the remaining breeds. The T1556C mutation at H-FABP may be important for the genetic improvement of intramuscular fat content and breed. Tap Na may be a source of resistant alleles for local ecologies.Keywords: H-FABP gene, FUT1 gene, BPI gene, IMF, PCR-RFL
Clinical evaluation of AI-assisted muscle ultrasound for monitoring muscle wasting in ICU patients
Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998-0.999 vs. 0.982 95% CI 0.962-0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9-21.7) to 9.4 min (IQR 7.2-11.7) compared to when using the AI tool (p < 0.001). AI-assisted muscle ultrasound removes the need for manual tracing, increases reproducibility and saves time. This system may aid monitoring muscle size in ICU patients assisting rehabilitation programmes
Evidence of previous but not current transmission of chikungunya virus in southern and central Vietnam: Results from a systematic review and a seroprevalence study in four locations
Recommended from our members
Computer-aided prognosis of tuberculous meningitis combining imaging and non-imaging data
Tuberculous meningitis (TBM) is the most lethal form of tuberculosis. Clinical features, such as coma, can predict death, but they are insufficient for the accurate prognosis of other outcomes, especially when impacted by co-morbidities such as HIV infection. Brain magnetic resonance imaging (MRI) characterises the extent and severity of disease and may enable more accurate prediction of complications and poor outcomes. We analysed clinical and brain MRI data from a prospective longitudinal study of 216 adults with TBM; 73 (34%) were HIV-positive, a factor highly correlated with mortality. We implemented an end-to-end framework to model clinical and imaging features to predict disease progression. Our model used state-of-the-art machine learning models for automatic imaging feature encoding, and time-series models for forecasting, to predict TBM progression. The proposed approach is designed to be robust to missing data via a novel tailored model optimisation framework. Our model achieved a 60% balanced accuracy in predicting the prognosis of TBM patients over the six different classes. HIV status did not alter the performance of the models. Furthermore, our approach identified brain morphological lesions caused by TBM in both HIV and non-HIV-infected, associating lesions to the disease staging with an overall accuracy of 96%. These results suggest that the lesions caused by TBM are analogous in both populations, regardless of the severity of the disease. Lastly, our models correctly identified changes in disease symptomatology and severity in 80% of the cases. Our approach is the first attempt at predicting the prognosis of TBM by combining imaging and clinical data, via a machine learning model. The approach has the potential to accurately predict disease progression and enable timely clinical intervention.</p
Recommended from our members
Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit
BackgroundInterpreting point-of-care lung ultrasound (LUS) images from intensive care unit (ICU) patients can be challenging, especially in low- and middle- income countries (LMICs) where there is limited training available. Despite recent advances in the use of Artificial Intelligence (AI) to automate many ultrasound imaging analysis tasks, no AI-enabled LUS solutions have been proven to be clinically useful in ICUs, and specifically in LMICs. Therefore, we developed an AI solution that assists LUS practitioners and assessed its usefulness in a low resource ICU.MethodsThis was a three-phase prospective study. In the first phase, the performance of four different clinical user groups in interpreting LUS clips was assessed. In the second phase, the performance of 57 non-expert clinicians with and without the aid of a bespoke AI tool for LUS interpretation was assessed in retrospective offline clips. In the third phase, we conducted a prospective study in the ICU where 14 clinicians were asked to carry out LUS examinations in 7 patients with and without our AI tool and we interviewed the clinicians regarding the usability of the AI tool.ResultsThe average accuracy of beginners’ LUS interpretation was 68.7% [95% CI 66.8–70.7%] compared to 72.2% [95% CI 70.0–75.6%] in intermediate, and 73.4% [95% CI 62.2–87.8%] in advanced users. Experts had an average accuracy of 95.0% [95% CI 88.2–100.0%], which was significantly better than beginners, intermediate and advanced users (p ConclusionsAI-assisted LUS can help non-expert clinicians in an LMIC ICU improve their performance in interpreting LUS features more accurately, more quickly and more confidently.</p
Recommended from our members
Clinical evaluation of AI-assisted muscle ultrasound for monitoring muscle wasting in ICU patients
Muscle ultrasound has been shown to be a valid and safe imaging modality to assess muscle wasting in critically ill patients in the intensive care unit (ICU). This typically involves manual delineation to measure the rectus femoris cross-sectional area (RFCSA), which is a subjective, time-consuming, and laborious task that requires significant expertise. We aimed to develop and evaluate an AI tool that performs automated recognition and measurement of RFCSA to support non-expert operators in measurement of the RFCSA using muscle ultrasound. Twenty patients were recruited between Feb 2023 and July 2023 and were randomized sequentially to operators using AI (n = 10) or non-AI (n = 10). Muscle loss during ICU stay was similar for both methods: 26 ± 15% for AI and 23 ± 11% for the non-AI, respectively (p = 0.13). In total 59 ultrasound examinations were carried out (30 without AI and 29 with AI). When assisted by our AI tool, the operators showed less variability between measurements with higher intraclass correlation coefficients (ICCs 0.999 95% CI 0.998–0.999 vs. 0.982 95% CI 0.962–0.993) and lower Bland Altman limits of agreement (± 1.9% vs. ± 6.6%) compared to not using the AI tool. The time spent on scans reduced significantly from a median of 19.6 min (IQR 16.9–21.7) to 9.4 min (IQR 7.2–11.7) compared to when using the AI tool (p </p
