94 research outputs found

    MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage

    Get PDF
    Macrophage receptor with collagenous structure (MARCO) has an important role in the phagocytosis of Mycobacterium tuberculosis (M. tuberculosis). We hypothesized that MARCO polymorphisms are associated with phagocytosis, tuberculosis (TB) disease susceptibility and presentation, and infecting lineage. We used a human cellular model to examine how MARCO genotype mediates the immune response; a case-control study to investigate tuberculosis host genetic susceptibility; and a host-pathogen genetic analysis to study host-pathogen interactions. Two MARCO heterozygous (AG) genotypes (single-nucleotide polymorphisms rs2278589 and rs6751745) were associated with impaired phagocytosis of M. tuberculosis trehalose 6,6'-dimycolate-cord factor and β-glucan-coated beads in macrophages. The heterozygous genotypes of rs2278589 and rs6751745 were also associated with increased risk of pulmonary TB (PTB; rs2278589, P=0.001, odds ratio (OR)=1.6; rs6751745, P=0.009, OR=1.4), and with severe chest X-ray abnormalities (P=0.007, OR=1.6). These two genotypes were also associated with the Beijing lineage (rs2278589, P=0.001, OR=1.7; rs6751745, P=0.01, OR=1.5). Together, these results suggest that MARCO polymorphisms may regulate phagocytosis of M. tuberculosis and susceptibility and severity of PTB. They also suggest MARCO genotype and Beijing strains may interact to increase the risk of PT

    Prevalence and Risk Factors for Tuberculosis Infection among Hospital Workers in Hanoi, Viet Nam

    Get PDF
    BACKGROUND: Transmission of tuberculosis (TB) to health care workers (HCWs) is a global issue. Although effective infection control measures are expected to reduce nosocomial TB, HCWs' infection has not been assessed enough in TB high burden countries. We conducted a cross-sectional study to determine the prevalence of TB infection and its risk factors among HCWs in Hanoi, Viet Nam. METHODOLOGY/PRINCIPAL FINDINGS: A total of 300 HCWs including all staff members in a municipal TB referral hospital received an interferon-gamma release assay (IGRA), QuantiFERON-TB Gold In-Tube(TM), followed by one- and two-step tuberculin skin test (TST) and a questionnaire-based interview. Agreement between the tests was evaluated by kappa statistics. Risk factors for TB infection were analyzed using a logistic regression model. Among the participants aged from 20 to 58 years (median = 40), prevalence of TB infection estimated by IGRA, one- and two-step TST was 47.3%, 61.1% and 66.3% respectively. Although the levels of overall agreement between IGRA and TST were moderate, the degree of agreement was low in the group with BCG history (kappa = 0.29). Working in TB hospital was associated with twofold increase in odds of TB infection estimated by IGRA. Increased age, low educational level and the high body mass index also demonstrated high odds ratios of IGRA positivity. CONCLUSIONS/SIGNIFICANCE: Prevalence of TB infection estimated by either IGRA or TST is high among HCWs in the hospital environment for TB care in Viet Nam and an infection control program should be reinforced. In communities with heterogeneous history of BCG vaccination, IGRA seems to estimate TB infection more accurately than any other criteria using TST

    Association of Inherited Variation in Toll-Like Receptor Genes with Malignant Melanoma Susceptibility and Survival

    Get PDF
    The family of Toll-like receptors (TLRs) is critical in linking innate and acquired immunity. Polymorphisms in the genes encoding TLRs have been associated with autoimmune diseases and cancer. We investigated the genetic variation of TLR genes and its potential impact on melanoma susceptibility and patient survival. The study included 763 cutaneous melanoma cases recruited in Germany and 736 matched controls that were genotyped for 47 single nucleotide polymorphisms (SNPs) in 8 TLR genes. The relationship between genotype, disease status and survival was investigated taking into account patient and tumor characteristics, and melanoma treatment. Analysis of 7 SNPs in TLR2, 7 SNPs in TLR3 and 8 SNPs in TLR4 showed statistically significant differences in distribution of inferred haplotypes between cases and controls. No individual polymorphism was associated with disease susceptibility except for the observed tendency for TLR2-rs3804099 (odds ratio OR  = 1.15, 95% CI 0.99–1.34, p = 0.07) and TLR4-rs2149356 (OR = 0.85, 95% CI 0.73–1.00, p = 0.06). Both polymorphisms were part of the haplotypes associated with risk modulation. An improved overall survival (Hazard ratio HR 0.53, 95% CI 0.32–0.88) and survival following metastasis (HR 0.55, 95% CI 0.34–0.91) were observed in carriers of the variant allele (D299G) of TLR4-rs4986790. In addition various TLR2, TLR4 and TLR5 haplotypes were associated with increased overall survival. Our results point to a novel association between TLR gene variants and haplotypes with melanoma survival. Our data suggest a role for the D299G polymorphism in the TLR4 gene in overall survival and a potential link with systemic treatment at stage IV of the disease. The polymorphic amino acid residue, located in the ectodomain of TLR4, can have functional consequences

    Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate whether the toll-like receptor 2 polymorphisms could influence susceptibility to pulmonary TB, its phenotypes, and blood lymphocyte subsets.</p> <p>Methods</p> <p>A total of 368 subjects, including 184 patients with pulmonary TB and 184 healthy controls, were examined for TLR2 polymorphisms over locus -100 (microsatellite guanine-thymine repeats), -16934 (T>A), -15607 (A>G), -196 to -174 (insertion>deletion), and 1350 (T>C). Eighty-six TB patients were examined to determine the peripheral blood lymphocyte subpopulations.</p> <p>Results</p> <p>We newly identified an association between the haplotype [A-G-(insertion)-T] and susceptibility to pulmonary TB (p = 0.006, false discovery rate q = 0.072). TB patients with systemic symptoms had a lower -196 to -174 deletion/deletion genotype frequency than those without systemic symptoms (5.7% vs. 17.7%; p = 0.01). TB patients with the deletion/deletion genotype had higher blood NK cell counts than those carrying the insertion allele (526 vs. 243.5 cells/μl, p = 0.009). TB patients with pleuritis had a higher 1350 CC genotype frequency than those without pleuritis (12.5% vs. 2.1%; p = 0.004). TB patients with the 1350 CC genotype had higher blood NK cell counts than those carrying the T allele (641 vs. 250 cells/μl, p = 0.004). TB patients carrying homozygous short alleles for GT repeats had higher blood NK cell counts than those carrying one or no short allele (641 vs. 250 cells/μl, p = 0.004).</p> <p>Conclusions</p> <p>TLR2 genetic polymorphisms influence susceptibility to pulmonary TB. TLR2 variants play a role in the development of TB phenotypes, probably by controlling the expansion of NK cells.</p

    Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese

    Get PDF
    Interferon-γ (IFN-γ) is a key molecule of T helper 1 (Th1)-immune response against tuberculosis (TB), and rare genetic defects of IFN-γ receptors cause disseminated mycobacterial infection. The aim of the present study was to investigate whether genetic polymorphisms found in the Th1-immune response genes play a role in TB. In our study, DNA samples were collected from two series of cases including 832 patients with new smear-positive TB and 506 unrelated individuals with no history of TB in the general population of Hanoi, Vietnam. Alleles of eight microsatellite markers located around Th1-immune response-related genes and single nucleotide polymorphisms near the promising microsatellites were genotyped. A set of polymorphisms within the interferon gamma receptor 2 gene (IFNGR2) showed a significant association with protection against TB (P = 0.00054). Resistant alleles tend to be less frequently found in younger age at diagnosis (P = 0.011). Luciferase assays revealed high transcriptional activity of the promoter segment in linkage disequilibrium with resistant alleles. We conclude that the polymorphisms of IFNGR2 may confer resistance to the TB development of newly infected individuals. Contribution of the genetic factors to TB appeared to be different depending on age at diagnosis

    Genetic Epidemiology of Tuberculosis Susceptibility: Impact of Study Design

    Get PDF
    Several candidate gene studies have provided evidence for a role of host genetics in susceptibility to tuberculosis (TB). However, the results of these studies have been very inconsistent, even within a study population. Here, we review the design of these studies from a genetic epidemiological perspective, illustrating important differences in phenotype definition in both cases and controls, consideration of latent M. tuberculosis infection versus active TB disease, population genetic factors such as population substructure and linkage disequilibrium, polymorphism selection, and potential global differences in M. tuberculosis strain. These considerable differences between studies should be accounted for when examining the current literature. Recommendations are made for future studies to further clarify the host genetics of TB

    A hidden HIV epidemic among women in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV epidemic in Vietnam is still concentrated among high risk populations, including IDU and FSW. The response of the government has focused on the recognized high risk populations, mainly young male drug users. This concentration on one high risk population may leave other populations under-protected or unprepared for the risk and the consequences of HIV infection. In particular, attention to women's risks of exposure and needs for care may not receive sufficient attention as long as the perception persists that the epidemic is predominantly among young males. Without more knowledge of the epidemic among women, policy makers and planners cannot ensure that programs will also serve women's needs.</p> <p>Methods</p> <p>More than 300 documents appearing in the period 1990 to 2005 were gathered and reviewed to build an understanding of HIV infection and related risk behaviors among women and of the changes over time that may suggest needed policy changes.</p> <p>Results</p> <p>It appears that the risk of HIV transmission among women in Vietnam has been underestimated; the reported data may represent as little as 16% of the real number. Although modeling predicted that there would be 98,500 cases of HIV-infected women in 2005, only 15,633 were accounted for in reports from the health system. That could mean that in 2005, up to 83,000 women infected with HIV have not been detected by the health care system, for a number of possible reasons. For both detection and prevention, these women can be divided into sub-groups with different risk characteristics. They can be infected by sharing needles and syringes with IDU partners, or by having unsafe sex with clients, husbands or lovers. However, most new infections among women can be traced to sexual relations with young male injecting drug users engaged in extramarital sex. Each of these groups may need different interventions to increase the detection rate and thus ensure that the women receive the care they need.</p> <p>Conclusion</p> <p>Women in Vietnam are increasingly at risk of HIV transmission but that risk is under-reported and under-recognized. The reasons are that women are not getting tested, are not aware of risks, do not protect themselves and are not being protected by men. Based on this information, policy-makers and planners can develop better prevention and care programs that not only address women's needs but also reduce further spread of the infection among the general population.</p

    An Interferon-Related Signature in the Transcriptional Core Response of Human Macrophages to Mycobacterium tuberculosis Infection

    Get PDF
    The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen

    Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells

    Get PDF
    BACKGROUND: Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB&LTBI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. CONCLUSIONS/SIGNIFICANCE: The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI
    corecore