49 research outputs found

    Meningococcal, influenza virus, and hepatitis B virus vaccination coverage level among health care workers in Hajj

    Get PDF
    Abstract Background The objective of this study was to assess the compliance of health care workers (HCWs) employed in Hajj in receiving the meningococcal, influenza, and hepatitis B vaccines. Methods A cross-sectional survey of doctors and nurses working in all Mena and Arafat hospitals and primary health care centers who attended Hajj-medicine training programs immediately before the beginning of Hajj of the lunar Islamic year 1423 (2003) using self-administered structured questionnaire which included demographic data and data on vaccination history. Results A total of 392 HCWs were studied including 215 (54.8%) nurses and 177 (45.2%) doctors. One hundred and sixty four (41.8%) HCWs were from Makkah and the rest were recruited from other regions in Saudi Arabia. Three hundred and twenty three (82.4%) HCWs received the quadrivalent (ACYW135) meningococcal meningitis vaccine with 271 (83.9%) HCWs receiving it at least 2 weeks before coming to Hajj, whereas the remaining 52 (16.1%) HCWs received it within Conclusion The meningococcal and hepatitis B vaccination coverage level among HCWs in Hajj was suboptimal and the influenza vaccination level was notably low. Strategies to improve vaccination coverage among HCWs should be adopted by all health care facilities in Saudi Arabia.</p

    AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis

    Get PDF
    The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    Proton transfer in the oxidative half-reaction of pentaerythritol tetranitrate reductase

    No full text
    The roles of His181, His184 and Tyr186 in PETN reductase have been examined by mutagenesis, spectroscopic and stopped-flow kinetics, and by determination of crystallographic structures for the Y186F PETN reductase and reduced wild-type enzyme—progesterone complex. Residues His181 and His184 are important in the binding of coenzyme, steroids, nitroaromatic ligands and the substrate 2-cyclohexen-1-one. The H181A and H184A enzymes retain activity in reductive and oxidative half-reactions, and thus do not play an essential role in catalysis. Ligand binding and catalysis is not substantially impaired in Y186F PETN reductase, which contrasts with data for the equivalent mutation (Y196F) in Old Yellow Enzyme. The structure of Y186F PETN reductase is identical to wild-type enzyme, with the obvious exception of the mutation. We show in PETN reductase that Tyr186 is not a key proton donor in the reduction of α/β unsaturated carbonyl compounds. The structure of two electron-reduced PETN reductase bound to the inhibitor progesterone mimics the catalytic enzyme-steroid substrate complex and is similar to the structure of the oxidized enzyme-inhibitor complex. The reactive C1-C2 unsaturated bond of the steroid is inappropriately orientated with the flavin N5 atom for hydride transfer. With steroid substrates, the productive conformation is achieved by orientating the steroid through flipping by 180°, consistent with known geometries for hydride transfer in flavoenzymes. Our data highlight mechanistic differences between Old Yellow Enzyme and PETN reductase and indicate that catalysis requires a metastable enzyme-steroid complex and not the most stable complex observed in crystallographic studies
    corecore