222 research outputs found

    Computing Equilibria of Prediction Markets via Persuasion

    Full text link
    We study the computation of equilibria in prediction markets in perhaps the most fundamental special case with two players and three trading opportunities. To do so, we show equivalence of prediction market equilibria with those of a simpler signaling game with commitment introduced by Kong and Schoenebeck (2018). We then extend their results by giving computationally efficient algorithms for additional parameter regimes. Our approach leverages a new connection between prediction markets and Bayesian persuasion, which also reveals interesting conceptual insights

    The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase

    Get PDF
    Copyright: ยฉ 2013 Gwynn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by a Wellcome Trust project grant to MD (Reference: 077368), an ERC starting grant to MD (Acronym: SM-DNA-REPAIR) and a BBSRC project grant to PM, NS and MD (Reference: BB/I003142/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Hypoxia inducible factor 1ฮฑ gene (HIF-1ฮฑ) splice variants: potential prognostic biomarkers in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of genes regulating oxygen homeostasis. The HIF-1 protein is composed of two HIF-1ฮฑ and HIF-1ฮฒ/aryl hydrocarbon receptor nuclear translocator (ARNT) subunits. The prognostic relevance of HIF-1ฮฑ protein overexpression has been shown in breast cancer. The impact of HIF-1ฮฑ alternative splice variant expression on breast cancer prognosis in terms of metastasis risk is not well known.</p> <p>Methods</p> <p>Using real-time quantitative reverse transcription PCR assays, we measured mRNA concentrations of total <it>HIF-1ฮฑ </it>and 4 variants in breast tissue specimens in a series of 29 normal tissues or benign lesions (normal/benign) and 53 primary carcinomas. In breast cancers <it>HIF-1ฮฑ </it>splice variant levels were compared to clinicopathological parameters including tumour microvessel density and metastasis-free survival.</p> <p>Results</p> <p><it>HIF-1ฮฑ </it>isoforms containing a three base pairs TAG insertion between exon 1 and exon 2 (designated <it>HIF-1ฮฑ</it><sup><it>TAG</it></sup>) and <it>HIF-1ฮฑ</it><sup><it>736 </it></sup>mRNAs were found expressed at higher levels in oestrogen receptor (OR)-negative carcinomas compared to normal/benign tissues (<it>P </it>= 0.009 and <it>P </it>= 0.004 respectively). In breast carcinoma specimens, lymph node status was significantly associated with <it>HIF-1ฮฑ</it><sup><it>TAG </it></sup>mRNA levels (<it>P </it>= 0.037). Significant statistical association was found between tumour grade and <it>HIF-1ฮฑ</it><sup><it>TAG </it></sup>(<it>P </it>= 0.048), and total <it>HIF-1ฮฑ </it>(<it>P </it>= 0.048) mRNA levels. <it>HIF-1ฮฑ</it><sup><it>TAG </it></sup>mRNA levels were also inversely correlated with both oestrogen and progesterone receptor status (<it>P </it>= 0.005 and <it>P </it>= 0.033 respectively). Univariate analysis showed that high <it>HIF-1ฮฑ</it><sup><it>TAG </it></sup>mRNA levels correlated with shortened metastasis free survival (<it>P </it>= 0.01).</p> <p>Conclusions</p> <p>Our results show for the first time that mRNA expression of a <it>HIF-1ฮฑ</it><sup><it>TAG </it></sup>splice variant reflects a stage of breast cancer progression and is associated with a worse prognosis.</p> <p>See commentary: <url>http://www.biomedcentral.com/1741-7015/8/45</url></p

    Big Genomes Facilitate the Comparative Identification of Regulatory Elements

    Get PDF
    The identification of regulatory sequences in animal genomes remains a significant challenge. Comparative genomic methods that use patterns of evolutionary conservation to identify non-coding sequences with regulatory function have yielded many new vertebrate enhancers. However, these methods have not contributed significantly to the identification of regulatory sequences in sequenced invertebrate taxa. We demonstrate here that this differential success, which is often attributed to fundamental differences in the nature of vertebrate and invertebrate regulatory sequences, is instead primarily a product of the relatively small size of sequenced invertebrate genomes. We sequenced and compared loci involved in early embryonic patterning from four species of true fruit flies (family Tephritidae) that have genomes four to six times larger than those of Drosophila melanogaster. Unlike in Drosophila, where virtually all non-coding DNA is highly conserved, blocks of conserved non-coding sequence in tephritids are flanked by large stretches of poorly conserved sequence, similar to what is observed in vertebrate genomes. We tested the activities of nine conserved non-coding sequences flanking the even-skipped gene of the teprhitid Ceratis capitata in transgenic D. melanogaster embryos, six of which drove patterns that recapitulate those of known D. melanogaster enhancers. In contrast, none of the three non-conserved tephritid non-coding sequences that we tested drove expression in D. melanogaster embryos. Based on the landscape of non-coding conservation in tephritids, and our initial success in using conservation in tephritids to identify D. melanogaster regulatory sequences, we suggest that comparison of tephritid genomes may provide a systematic means to annotate the non-coding portion of the D. melanogaster genome. We also propose that large genomes be given more consideration in the selection of species for comparative genomics projects, to provide increased power to detect functional non-coding DNAs and to provide a less biased view of the evolution and function of animal genomes

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts

    Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    Get PDF
    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process
    • โ€ฆ
    corecore