13 research outputs found

    Asymptomatic Carriage of Plasmodium in Urban Dakar: The Risk of Malaria Should Not Be Underestimated

    Get PDF
    Introduction: The objective of this study was to measure the rate of asymptomatic carriage of plasmodium in the Dakar region two years after the implementation of new strategies in clinical malaria management. Methodology: Between October and December 2008, 2952 households selected in 50 sites of Dakar area, were visited for interviews and blood sampling. Giemsa-stained thick blood smears (TBS) were performed for microscopy in asymptomatic adult women and children aged 2 to 10 years. To ensure the quality of the microscopy, we performed a polymerase chai

    Genetics of chloroquine-resistant malaria: a haplotypic view

    Full text link

    On the adaptability of unsupervised CNN-based deformable image registration to unseen image domains

    No full text
    Deformable image registration is a fundamental problem in medical image analysis. During the last years, several methods based on deep convolutional neural networks (CNN) proved to be highly accurate to perform this task. These models achieved state-of-the-art accuracy while drastically reducing the required computational time, but mainly focusing on images of specific organs and modalities. To date, no work has reported on how these models adapt across different domains. In this work, we ask the question: can we use CNN-based registration models to spatially align images coming from a domain different than the one/s used at training time? We explore the adaptability of CNN-based image registration to different organs/modalities. We employ a fully convolutional architecture trained following an unsupervised approach. We consider a simple transfer learning strategy to study the generalisation of such model to unseen target domains, and devise a one-shot learning scheme taking advantage of the unsupervised nature of the proposed method. Evaluation on two publicly available datasets of X-Ray lung images and cardiac cine magnetic resonance sequences is provided. Our experiments suggest that models learned in different domains can be transferred at the expense of a decrease in performance, and that one-shot learning in the context of unsupervised CNN-based registration is a valid alternative to achieve consistent registration performance when only a pair of images from the target domain is available

    Immunogenicity and safety of fractional doses of yellow fever vaccines: a randomised, double-blind, non-inferiority trial

    No full text
    Background Stocks of yellow fever vaccine are insufficient to cover exceptional demands for outbreak response. Fractional dosing has shown efficacy, but evidence is limited to the 17DD substrain vaccine. We assessed the immunogenicity and safety of one-fifth fractional dose compared with standard dose of four WHO-prequalified yellow fever vaccines produced from three substrains. Methods We did this randomised, double-blind, non-inferiority trial at research centres in Mbarara, Uganda, and Kilifi, Kenya. Eligible participants were aged 18–59 years, had no contraindications for vaccination, were not pregnant or lactating, had no history of yellow fever vaccination or infection, and did not require yellow fever vaccination for travel. Eligible participants were recruited from communities and randomly assigned to one of eight groups, corresponding to the four vaccines at standard or fractional dose. The vaccine was administered subcutaneously by nurses who were not masked to treatment, but participants and other study personnel were masked to vaccine allocation. The primary outcome was proportion of participants with seroconversion 28 days after vaccination. Seroconversion was defined as post-vaccination neutralising antibody titres at least 4 times pre-vaccination measurement measured by 50% plaque reduction neutralisation test (PRNT50). We defined non-inferiority as less than 10% decrease in seroconversion in fractional compared with standard dose groups 28 days after vaccination. The primary outcome was measured in the per-protocol population, and safety analyses included all vaccinated participants. This trial is registered with ClinicalTrials.gov, NCT02991495. Findings Between Nov 6, 2017, and Feb 21, 2018, 1029 participants were assessed for inclusion. 69 people were ineligible, and 960 participants were enrolled and randomly assigned to vaccine manufacturer and dose (120 to Bio-Manguinhos-Fiocruz standard dose, 120 to Bio-Manguinhos-Fiocruz fractional dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides standard dose, 120 to Chumakov Institute of Poliomyelitis and Viral Encephalitides fractional dose, 120 to Institut Pasteur Dakar standard dose, 120 to Institut Pasteur Dakar fractional dose, 120 to Sanofi Pasteur standard dose, and 120 to Sanofi Pasteur fractional dose). 49 participants had detectable PRNT50 at baseline and 11 had missing PRNT50 results at baseline or 28 days. 900 were included in the per-protocol analysis. 959 participants were included in the safety analysis. The absolute difference in seroconversion between fractional and standard doses by vaccine was 1·71% (95% CI −2·60 to 5·28) for Bio-Manguinhos-Fiocruz, −0·90% (–4·24 to 3·13) for Chumakov Institute of Poliomyelitis and Viral Encephalitides, 1·82% (–2·75 to 5·39) for Institut Pasteur Dakar, and 0·0% (–3·32 to 3·29) for Sanofi Pasteur. Fractional doses from all four vaccines met the non-inferiority criterion. The most common treatment-related adverse events were headache (22·2%), fatigue (13·7%), myalgia (13·3%) and self-reported fever (9·0%). There were no study-vaccine related serious adverse events. Interpretation Fractional doses of all WHO-prequalified yellow fever vaccines were non-inferior to the standard dose in inducing seroconversion 28 days after vaccination, with no major safety concerns. These results support the use of fractional dosage in the general adult population for outbreak response in situations of vaccine shortage. Funding The study was funded by Médecins Sans Frontières Foundation, Wellcome Trust (grant no. 092654), and the UK Department for International Development. Vaccines were donated in kind
    corecore