44 research outputs found

    The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

    Get PDF
    The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and preventative measures against enteric pathogens

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Respiratory and Mayer wave-related discharge patterns of raphé and pontine neurons change with vagotomy

    No full text
    Previous models have attributed changes in respiratory modulation of pontine neurons after vagotomy to a loss of pulmonary stretch receptor “gating” of an efference copy of inspiratory drive. Recently, our group confirmed that pontine neurons change firing patterns and become more respiratory modulated after vagotomy, although average peak and mean firing rates of the sample did not increase (Dick et al., J Physiol 586: 4265–4282, 2008). Because raphĂ© neurons are also elements of the brain stem respiratory network, we tested the hypotheses that after vagotomy raphĂ© neurons have increased respiratory modulation and that alterations in their firing patterns are similar to those seen for pontine neurons during withheld lung inflation. RaphĂ© and pontine neurons were recorded simultaneously before and after vagotomy in decerebrated cats. Before vagotomy, 14% of 95 raphĂ© neurons had increased activity during single respiratory cycles prolonged by withholding lung inflation; 13% exhibited decreased activity. After vagotomy, the average index of respiratory modulation (η2) increased (0.05 ± 0.10 to 0.12 ± 0.18 SD; Student's paired t-test, P < 0.01). Time series and frequency domain analyses identified pontine and raphĂ© neuron firing rate modulations with a 0.1-Hz rhythm coherent with blood pressure Mayer waves. These “Mayer wave-related oscillations” (MWROs) were coupled with central respiratory drive and became synchronized with the central respiratory rhythm after vagotomy (7 of 10 animals). Cross-correlation analysis identified functional connectivity in 52 of 360 pairs of neurons with MWROs. Collectively, the results suggest that a distributed network participates in the generation of MWROs and in the coordination of respiratory and vasomotor rhythms
    corecore