7 research outputs found

    Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly.

    Get PDF
    CENP-A chromatin forms the foundation for kinetochore assembly. Replication-independent incorporation of CENP-A at centromeres depends on its chaperone HJURP(Scm3), and Mis18 in vertebrates and fission yeast. The recruitment of Mis18 and HJURP(Scm3) to centromeres is cell cycle regulated. Vertebrate Mis18 associates with Mis18BP1(KNL2), which is critical for the recruitment of Mis18 and HJURP(Scm3). We identify two novel fission yeast Mis18-interacting proteins (Eic1 and Eic2), components of the Mis18 complex. Eic1 is essential to maintain Cnp1(CENP-A) at centromeres and is crucial for kinetochore integrity; Eic2 is dispensable. Eic1 also associates with Fta7(CENP-Q/Okp1), Cnl2(Nkp2) and Mal2(CENP-O/Mcm21), components of the constitutive CCAN/Mis6/Ctf19 complex. No Mis18BP1(KNL2) orthologue has been identified in fission yeast, consequently it remains unknown how the key Cnp1(CENP-A) loading factor Mis18 is recruited. Our findings suggest that Eic1 serves a function analogous to that of Mis18BP1(KNL2), thus representing the functional counterpart of Mis18BP1(KNL2) in fission yeast that connects with a module within the CCAN/Mis6/Ctf19 complex to allow the temporally regulated recruitment of the Mis18/Scm3(HJURP) Cnp1(CENP-A) loading factors. The novel interactions identified between CENP-A loading factors and the CCAN/Mis6/Ctf19 complex are likely to also contribute to CENP-A maintenance in other organisms.L.S. was supported by an EC FP7 Marie Curie International Incoming Fellowship (PIIF-GA-2010-275280) and an EMBO Long Term Fellowship (ALTF 1491-2010). The Darwin Trust and a Principal's Career Development scholarship supported N.R.T.T. The Wellcome Trust supported the work of R.C.A. (095021 and 065061) and J.R. (084229) along with funding from the European Commission Network of Excellence EpiGeneSys (HEALTH-F4-2010-257082) to R.C.A. The Wellcome Trust Centre for Cell Biology (092076) and mass spectrometry instrumentation (091020) are supported by funding from the Wellcome Trust. R.C.A. is a Wellcome Trust Principal Research Fellow

    Visual Associative Learning in Restrained Honey Bees with Intact Antennae

    Get PDF
    A restrained honey bee can be trained to extend its proboscis in response to the pairing of an odor with a sucrose reward, a form of olfactory associative learning referred to as the proboscis extension response (PER). Although the ability of flying honey bees to respond to visual cues is well-established, associative visual learning in restrained honey bees has been challenging to demonstrate. Those few groups that have documented vision-based PER have reported that removing the antennae prior to training is a prerequisite for learning. Here we report, for a simple visual learning task, the first successful performance by restrained honey bees with intact antennae. Honey bee foragers were trained on a differential visual association task by pairing the presentation of a blue light with a sucrose reward and leaving the presentation of a green light unrewarded. A negative correlation was found between age of foragers and their performance in the visual PER task. Using the adaptations to the traditional PER task outlined here, future studies can exploit pharmacological and physiological techniques to explore the neural circuit basis of visual learning in the honey bee

    A comparative study of relational learning capacity in honeybees (Apis mellifera) and stingless bees (Melipona rufiventris)

    Get PDF
    Background: Learning of arbitrary relations is the capacity to acquire knowledge about associations between events or stimuli that do not share any similarities, and use this knowledge to make behavioural choices. This capacity is well documented in humans and vertebrates, and there is some evidence it exists in the honeybee (Apis mellifera). However, little is known about whether the ability for relational learning extends to other invertebrates, although many insects have been shown to possess excellent learning capacities in spite of their small brains. Methodology/Principal Findings: Using a symbolic matching-to-sample procedure, we show that the honeybee Apis mellifera rapidly learns arbitrary relations between colours and patterns, reaching 68.2% correct choice for pattern-colour relations and 73.3% for colour-pattern relations. However, Apis mellifera does not transfer this knowledge to the symmetrical relations when the stimulus order is reversed. A second bee species, the stingless bee Melipona rufiventris from Brazil, seems unable to learn the same arbitrary relations between colours and patterns, although it exhibits excellent discrimination learning. Conclusions/Significance: Our results confirm that the capacity for learning arbitrary relations is not limited to vertebrates, but even insects with small brains can perform this learning task. Interestingly, it seems to be a species-specific ability. The disparity in relational learning performance between the two bee species we tested may be linked to their specific foraging and recruitment strategies, which evolved in adaptation to different environments

    The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats

    No full text
    corecore