5 research outputs found

    Reducing broad-spectrum antibiotic use in intensive care unit between first and second waves of COVID-19 did not adversely affect mortality

    Get PDF
    Background: The COVID-19 pandemic increased the use of broad-spectrum antibiotics due to diagnostic uncertainty, particularly in critical care. Multi-professional communication became more difficult, weakening stewardship activities. Aim: To determine changes in bacterial co-/secondary infections and antibiotics used in COVID-19 patients in critical care, and mortality rates, between the first and second waves. Methods: Prospective audit comparing bacterial co-/secondary infections and their treatment during the first two waves of the pandemic in a single-centre teaching hospital intensive care unit. Data on demographics, daily antibiotic use, clinical outcomes, and culture results in patients diagnosed with COVID-19 infection were collected over 11 months. Findings: From March 9th, 2020 to September 2nd, 2020 (Wave 1), there were 156 patients and between September 3rd, 2020 and February 1st, 2021 (Wave 2) there were 235 patients with COVID-19 infection admitted to intensive care. No significant difference was seen in mortality or positive blood culture rates between the two waves. The proportion of patients receiving antimicrobial therapy (93.0% vs 81.7%; P < 0.01) and the duration of meropenem use (median (interquartile range): 5 (2–7) vs 3 (2–5) days; P = 0.01) was lower in Wave 2. However, the number of patients with respiratory isolates of Pseudomonas aeruginosa (4/156 vs 21/235; P < 0.01) and bacteraemia from a respiratory source (3/156 vs 20/235; P < 0.01) increased in Wave 2, associated with an outbreak of infection. There was no significant difference between waves with respect to isolation of other pathogens. Conclusion: Reduced broad-spectrum antimicrobial use in the second wave of COVID-19 compared with the first wave was not associated with significant change in mortality

    Reducing broad-spectrum antibiotic use in intensive care unit between first and second waves of COVID-19 did not adversely affect mortality

    Get PDF
    BACKGROUND: The COVID-19 pandemic increased the use of broad-spectrum antibiotics due to diagnostic uncertainty, particularly in critical care. Multi-professional communication became more difficult, weakening stewardship activities. AIM: To determine changes in bacterial co-/secondary infections and antibiotics used in COVID-19 patients in critical care, and mortality rates, between the first and second waves. METHODS: Prospective audit comparing bacterial co-/secondary infections and their treatment during the first two waves of the pandemic in a single-centre teaching hospital intensive care unit. Data on demographics, daily antibiotic use, clinical outcomes, and culture results in patients diagnosed with COVID-19 infection were collected over 11 months. FINDINGS: From March 9th, 2020 to September 2nd, 2020 (Wave 1), there were 156 patients and between September 3rd, 2020 and February 1st, 2021 (Wave 2) there were 235 patients with COVID-19 infection admitted to intensive care. No significant difference was seen in mortality or positive blood culture rates between the two waves. The proportion of patients receiving antimicrobial therapy (93.0% vs 81.7%; P &lt; 0.01) and the duration of meropenem use (median (interquartile range): 5 (2-7) vs 3 (2-5) days; P&#xA0;= 0.01) was lower in Wave 2. However, the number of patients with respiratory isolates of Pseudomonas aeruginosa (4/156 vs 21/235; P &lt; 0.01) and bacteraemia from a respiratory source (3/156 vs 20/235; P &lt; 0.01) increased in Wave 2, associated with an outbreak of infection. There was no significant difference between waves with respect to isolation of other pathogens. CONCLUSION: Reduced broad-spectrum antimicrobial use in the second wave of COVID-19 compared with the first wave was not associated with significant change in mortality.</p

    Cryptococcal meningitis: a neglected NTD?

    Get PDF
    Although HIV/AIDS has been anything but neglected over the last decade, opportunistic infections (OIs) are increasingly overlooked as large scale donors shift their focus from acute care to prevention and earlier antiretroviral treatment (ART) initiation. Of these OIs, cryptococcal meningitis, a deadly invasive fungal infection, continues to affect hundreds of thousands of HIV patients with advanced disease each year and is responsible for an estimated 15%-20% of all AIDS-related deaths [1,2]. Yet cryptococcal meningitis ranks amongst the most poorly funded “neglected” diseases in the world, receiving 0.2% of available relevant research and development (R&amp;D;) funding according to Policy Cures’ 2016 G-Finder Report [3,4]

    Development and application of DNA molecular probes

    No full text
    corecore