

Tilburg University

Error Detection in Spoken Human-Machine Interaction

Krahmer, E.J.; Swerts, M.G.J.; Theune, M.; Weegels, M.

Published in:
International Journal of Speech Technology

Publication date:
2001

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Krahmer, E. J., Swerts, M. G. J., Theune, M., & Weegels, M. (2001). Error Detection in Spoken Human-Machine
Interaction. International Journal of Speech Technology, 4(1), 19-30.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/991b8404-43f0-4c99-8c7d-f70d5dd1f65d

Error Detection in Spoken Human-Machine

Interaction

E. Krahmer∗, M. Swerts∗,†, M. Theune∗ and M. Weegels∗

∗ IPO, Center for User-System Interaction,
TU/e, Eindhoven University of Technology,

The Netherlands
{e.j.krahmer/m.g.j.swerts/m.theune}@tue.nl

‡ CNTS, Center for Dutch Language and Speech,
UIA, University of Antwerp

Belgium

Abstract

Given the state of the art of current language and speech technology,
errors are unavoidable in present-day spoken dialogue systems. Therefore,
one of the main concerns in dialogue design is how to decide whether or
not the system has understood the user correctly. In human-human com-
munication, dialogue participants are continuously sending and receiving
signals on the status of the information being exchanged. We claim that
if spoken dialogue systems were able to detect such cues and change their
strategy accordingly, the interaction between user and system would im-
prove. The goals of the present study are therefore twofold: (i) to find out
which positive and negative cues people actually use in human-machine in-
teraction in response to explicit and implicit verification questions and how
informative these signals are, and (ii) to explore the possibilities of spot-
ting errors automatically and on-line. To reach these goals, we first per-
form a descriptive analysis, followed by experiments with memory-based
machine learning techniques. It appears that people systematically use
negative/marked cues when there are communication problems. The ex-
periments using memory-based machine learning techniques suggest that
it may be possible to spot errors automatically and on-line with high ac-
curacy, in particular when focussing on combinations of cues. This kind
of information may turn out to be highly relevant for spoken dialogue
systems, e.g., by providing quantitative criteria for changing the dialogue
strategy or speech recognition engine.

1 Introduction

Given the state of the art of current speech technology, spoken dialogue sys-
tems are prone to error, largely because of user utterances that are misrecog-
nized (Oviatt, Bernard and Levow, 1998). As a result, “[...] the lion’s share

1

of dialogue management intelligence in the present generation of [spoken di-
alogue] systems is mainly needed to cope with recognition errors” (den Os,
Boves, Lamel and Baggia, 1999, p. 1528). Unfortunately, there are no reliable
methods (yet) to decide whether the speech recognition engine made an error or
not. For instance, one attempted solution for the detection of errors is the use
of acoustic confidence scores. Recognition systems use these to decide whether
they should ‘believe’ the recognized string. However, there is not a simple
one-to-one relation between low confidence scores and (recognition) errors, nor
between high confidence scores and correct recognitions (see, e.g., Bouwman,
Sturm and Boves, 1999). Other research has shown that prosodic cues and lexi-
cal information from the recognized strings — in addition to acoustic confidence
measures — may also help to distinguish erroneous utterances from correct ones
(e.g., Hirschberg, Litman and Swerts, 1999), but, again, these do not completely
eliminate misunderstandings.1 It should be noted that both these strategies are
only concerned with recognition errors, whereas communication problems may
also be due to other factors, e.g., because the system may make wrong default
assumptions. For instance, the train timetable information systems discussed
below always assume that the user wants to travel today , which is not neces-
sarily the case.2 In conclusion, a spoken dialogue system cannot fully rely on
confidence scores and other prosodic or lexical features to decide whether or not
it can believe a recognized utterance. This means that current spoken dialogue
systems are forced to verify the utterances they recognized.

Consider the following (translated) dialogue ([ppn1-Reuver]) from the cor-
pus of Weegels (2000). Here U is a human user who interacts with a Dutch
spoken dialogue system S that provides train timetable information.

S1: Good morning, this is the talking computer. From which station to
which station do you want to travel?

U1: From Eindhoven to Reuver.
S2: On what day do you want to travel from Eindhoven to Winsum?
U2: I want to travel at 8 ’o clock from Eindhoven to Reuver.
S3: On what day do you want to travel from Eindhoven to Utrecht CS

at 8 ’o clock in the morning?
U3: No, in the evening at 8 ’o clock I want to travel from Eindhoven to

Reuver.
S4: From which station do you want to travel on Saturday July 18 at

8 ’o clock in the morning to Utrecht central station?
U4: I want to travel tonight at 8 ’o clock from Eindhoven to Reuver.
S5: So you want to travel from Eindhoven to Zutphen today at 20.00?
U6: No, I want to travel from Eindhoven to Reuver today at 20.00.
S6: From which station to which station do you want to travel?

etc.

1Conversely, in some cases, the recognizer might tolerate misrecognitions without causing
communication errors, i.e., when the recognized string is conceptually identical to the intended
meaning of the user’s utterance (e.g., “yeah” vs. “yes”) (Taylor, King, Isard and Wright, 1998).

2For a more exhaustive analysis of potential sources of errors, see Dybkjær, Bernsen and
Dybkjær (1998), who report on a Wizard of Oz experiment. See also section 7.

2

This dialogue is certainly suboptimal by all conceivable standards, even though
the user ultimately receives the desired information later on in the actual dia-
logue. It is difficult to generalize over spoken dialogue systems, but the example
illustrates some of the key aspects of current practice in spoken dialogue sys-
tems.

The dialogue system under consideration employs both explicit and implicit
verification questions to find out whether it has understood the user correctly.3

Examples of implicit verification are S2, S3 and S4. An implicit verification
question serves two purposes: it attempts to verify whether the preceding user
utterance was correctly understood, and it proceeds with the conversation by
immediately asking a follow-up question. The main advantage of implicit ver-
ification is that its combination of purposes is efficient; verification does not
have to slow down the dialogue. The downside of this strategy is that when
the system makes an error, users become rather confused (see, e.g., Weegels,
2000). Correcting an implicit verification amounts to denying a presupposition,
which is known to be difficult for speakers. This is most clear for question
S4. To answer it the user both has to supply the requested information and
correct the system’s assumption. An alternative for implicit verification that is
often employed is explicit verification, of which S5 is a typical example. This
question is solely aimed at verifying that the system’s current assumptions are
correct. Of course, this requires extra turns, which users may find annoying.
However, the advantage over implicit verification is that it is generally easier
for the system to deduce whether the verified information is indeed correct.
Unfortunately, this is not always as simple as one might think, for even though
explicit verification questions typically are of the form of a yes/no question, it
turns out that users do not always answer with a simple “yes” or “no” to con-
firm or disconfirm the system’s assumptions. In other words, for the detection
of problems following explicit verifications, the system cannot rely on the mere
presence of a “yes” or a “no” (see, e.g., Hockey, Rossen-Knill, Spejewski, Stone
and Isard, 1997). For instance, sometimes users confirm verified information
by simply repeating it, or disconfirm it by immediately correcting it. In sum,
neither explicit nor implicit verification is by itself a satisfactory solution for
dealing with the uncertainties in spoken human-machine interaction. It would
be good practice to use a strategy that combines the advantages of both ver-
ification strategies, while simultaneously minimizing the disadvantages. Thus,
it would be a better strategy to start with implicit verification and immedi-
ately change to explicit verification when communication problems arise.4 This
only works if the system has some reliable and automatic strategy to determine
whether the communication is going well or not based on the user’s input.

The goal of this paper is to explore whether users’ reactions to system utter-
3Even though explicit and implicit verification are the most common verification strategies,

this is not to say that they are the only ones. For instance, some systems do not verify
immediately, but only when they think they have collected all the relevant pieces of information
(compare S5 above).

4By contrast, the strategy of the dialogue system under consideration is to verify all infor-
mation implicitly except for the final (explicit) verification of all collected pieces of information
just before the database is consulted.

3

ances can be used for the purpose of error detection in spoken human-machine
interaction. Our approach is as follows. First, we briefly describe the process of
error detection in human-human communication, and compare it with spoken
human-machine interaction (section 2). In section 3 we provide some more de-
tails about the corpus used for the current study. Then, in section 4, we report
on a descriptive corpus analysis, focussing on non-prosodic cues in user reac-
tions to system utterances. It is investigated which signals users send when they
notice that the communication is running into problems. In addition, to find
out the utility of these user signals, precision and recall analyses are performed
on a per signal basis (section 5). The next question is whether it is possible
to come up with an automatic method that can reliably detect problems based
on features derived from users’ reactions to system utterances. In section 6 it
is shown that, once the relevant features are obtained, machine learning tech-
niques can be used to decide on the basis of combinations of features whether or
not the current user utterance signals a problem. Of course, an important next
question is whether it is possible to obtain the relevant features automatically.
In section 7 we briefly touch on recent work which suggests that it is. In the
same section, we also discuss the potential benefits of accurate error detection
methods for spoken dialogue systems in general.

2 Error detection in communication

Our expectations regarding error detections are based on prior work on human-
human communication,5 for which it is known that dialogue participants are
continuously sending and receiving signals on the status of the information
being exchanged. This process of information grounding (Clark and Schaeffer,
1989; Traum, 1994) typically proceeds in two phases: a presentation phase in
which the current speaker sends a message to his conversation partner, and an
acceptance phase in which the other partner signals whether the message came
across correctly or not. Following up on this, we assume that the signals in
the acceptance phase can either be positive (‘go on’) or negative (‘go back’). It
seems a valid assumption that the negative cues are comparatively marked, as
if the speaker wants to devote additional effort to make the other aware of the
apparent communication problem (Swerts, Koiso, Shimojima, and Katagiri,
1998). This is most likely due to the fact that missing a negative cue has
relatively serious consequences: it may cause breakdown of the communication.

Let us illustrate this by looking back to the dialogue discussed in the pre-
vious section, this time focussing on the user’s part. The first user utterance
(U1) is brief and to the point. The user understands the question, and sends
a positive signal in return: he accepts the system utterance by simply answer-
ing it. Things are different for the next three user utterances, each following
an implicit verification question that contains speech recognition errors (S2,

5This in line with the hypothesis put forward in Reeves and Nass (1996) that humans treat
computers (and media in general) as ‘social actors’. More specifically, Reeves and Nass suggest
that users who communicate with a machine in natural language will use their communicative
abilities as if they are communicating with another human.

4

Table 1: Positive versus negative cues.

positive (‘go on’) negative (‘go back’)
short turns long turns

unmarked word order marked word order
confirm disconfirm
answer no answer

no corrections corrections
no repetitions repetitions

new info no new info

S3, S4) and incorrect default assumptions (S3). Here the user sends negative
signals all realized with comparatively more effort: the utterances are all rela-
tively long, and contain repetitions and corrections. One contains an explicit
disconfirmation marker, etc. In other words, this dialogue suggests that also in
human-machine dialogue, users are continuously signalling whether the message
came across or not.

How does this process work in general? Which cues do people actually
use when signalling a problem? How exactly do positive signals differ from
negative ones in terms of effort? To answer these questions we operationalized
positive and negative variants for a number of features. As our starting point,
we took the idea that both user and system want the dialogue to be finished
successfully as soon as possible, and that they do not want to spend more effort
than necessary for current purposes. This leads to the distinction between
positive and negative cues in Table 1, where the positive cues can be seen as
unmarked settings of the features.

Thus, for instance, it is a positive signal to present new information (which
may speed up the dialogue), but not to repeat or correct information (which will
definitely not lead to a more swift conclusion of the conversation). Similarly, it
is not a positive signal if the user does not answer (this will require an extra
turn). We expect that, in general, users more often employ the ‘go back’ signals
when the preceding system utterance contains a problem, whereas the ‘go on’
signals tend to be used in response to unproblematic system utterances. In
addition, is seems likely that a ‘go back’ signal following an implicit verification
will contain relatively more marked features than a ‘go back’ signal following
an explicit verification.

In the remainder of this article we first perform a descriptive analysis to
see which positive and negative cues subjects indeed employ in response to
(un)problematic implicit or explicit verification questions. Then we try to de-
termine the utility of the various cues for error detection, using precision and
recall measures. Finally, we study to what extent these cues could be useful for
automatic on-line error detection.

5

Table 2: Numbers of question-answer pairs containing no communication prob-
lems (¬ problems) and those containing one or more problems (problems),
as a function of verification strategy.

¬ problems problems total
explicit 211 116 327
implicit 87 29 116
total 298 145 443

3 Description of the annotated corpus

For the analysis, a corpus was used of 120 dialogues with two speaker-independent
Dutch spoken dialogue systems which provide train timetable information (cf.
Weegels, 2000). The systems prompt the user for unknown slots, such as de-
parture station, arrival station, date, etc., in a series of questions. The two
systems differ mainly in verification strategy (one primarily uses implicit veri-
fication, the other only uses explicit verification), length of system utterances
and speech output (concatenated vs. synthetic speech). Twenty subjects were
asked to query both systems via telephone on a number of train journeys. They
were asked to perform three simple travel queries on each system (in total six
tasks). Two similar sets of three queries were constructed, to prevent literal
copying of subjects’ utterances from the first to the second system. The order
of presenting systems and sets was counterbalanced.

¿From the 120 dialogues, all implicit and explicit verification questions and
users’ reactions to these were selected, giving 487 question-answer pairs. For
the two dialogue systems under consideration, the verification questions are the
typical places where the user can become aware of any communication problems.
Of the aforementioned 487 question-answer pairs, there is a set of 44 pairs of
utterances (proportionally distributed over the subjects) which complicate the
descriptive analysis. This set consisted of three classes: (i) cases in which
the user either accidentally or on purpose accepted a wrong result, (ii) cases
in which the user was interrupted and thus could not properly “accept” the
verification contribution initiated by the system and (iii) a limited number
of cases in which subjects started their own “contribution” (e.g., ask a non-
related question such as “Can I use my reduction card?”). In all three cases, it is
difficult to interpret the utterances from the perspective of Clark and Schaeffer’s
process of Information Grounding. We decided to treat this set of 44 pairs as
outliers and leave them outside the initial descriptive analysis. This is done to
get a clean picture of the signals users actually sent in the acceptation phase.
We did use the full set of 487 utterances for the more practically motivated,
machine learning experiments for on-line error detection. After all, in a practical
application it is not possible to distinguish outliers from non-outliers.

The distribution of the 443 question-answer pairs used in the descriptive
analysis is given in Table 2. In this corpus, a communication problem arises
if the information which the system attempts to verify either results from a

6

speech recognition error (substitution, insertion or deletion) or is based on an
incorrect default assumption.6 The system utterances were labeled using the
following features:

• The kind of verification question: implicit (e.g., “When do you want
to travel to Amsterdam?”) or explicit (e.g., “So you want to travel to
Amsterdam?”).

• The number of slots that are verified (the total number of relevant slots
is six: arrival and departure station, day of travel as well as the relevant
part of the day (morning, evening or night) and desired time of travel plus
what the travel time refers to (arrival or departure)).

• The presence or absence of default assumptions (an example of a common
default assumption is that the user wants to travel today).

• The presence or absence of errors: the number of errors, the kind of errors
(speech recognition errors (insertions, substitutions and/or deletions) or
incorrect default assumption), and whether or not the error(s) are recur-
rent (that is: whether the problem(s) also manifested itself in the previous
system utterance).

Of user utterances the following features were labeled:

• The length of the user’s utterance (number of words).

• Whether or not the user gave an answer to the system’s verification ques-
tion (where an “empty turn” is a turn in which the user does not utter
any words).

• The word order: a distinction is made between ‘ordinary’ word order (“I
want to travel to Amsterdam”) and marked word order, in particular, top-
icalization (“To Amsterdam I want to travel”) or extraposition (“Where
I want to go to is Amsterdam”)

• The presence or absence of confirmation markers (“yes”, “yup”, “right”
etc.) and disconfirmation markers (“no”, “nope”, “wrong”, etc.).

• The number of repeated, new and/or corrected slots.

The labeling was done by the four authors and was straightforward. Differences
between annotators were infrequent and could always easily be resolved.

4 Descriptive analysis: Distribution of positive and
negative cues

For all cues, it was found that there is no significant difference in users’ re-
actions to recognition errors or to incorrect default assumptions. Therefore

6As said in the introduction, we are aware that there are other potential sources of problems.
We come back to this issue in section 7.

7

Table 3: Average number of words in user turns when there are no communi-
cation problems and when there are communication problems, as a function of
verification strategy (standard deviations are given between brackets).

¬ problems problems

explicit 1.68 (1.68) 3.44 (3.19)
implicit 3.21 (2.09) 7.12 (2.10)

Table 4: Percentages of empty user turns when there are no communication
problems and when there are communication problems, as a function of verifi-
cation strategy.

¬ problems problems

explicit 0% 2.6%
implicit 3.4% 10.3%

no distinction is made between these two sources of communication problems
in analysing the data. Table 3 lists the average length in words of the user
utterances. Subjects use more words when there are problems; the increase fol-
lowing a problematic implicit verification question is particularly large. Table
4 contains the percentages of empty turns in the four cases of interest. These
figures are comparatively low, due to the fact that empty turns were not often
encountered (the total number is nine). Still it is interesting to point out that
the distribution of empty turns follows the expected trend: they arise relatively
more often when there is a problem, in particular following an implicit verifica-
tion. Table 5 records the relative frequency of turns with a marked word order.
Again: the percentage of user utterances containing a marked word order is
higher when there are communication problems, albeit that the difference is
once more relatively small in the case of explicit verifications. Additionally, it
is found that implicit verifications containing a problem are associated with the
highest percentage of marked word orders by far.

Table 6 shows the respective percentages of (dis)confirmations, again as a
function of the verification strategy. It is found that for explicit verifications the
number of non-confirmations (user answers which do not contain the word “yes”
or an equivalent confirmation marker) increases when there are problems. It is
somewhat surprising, given that explicit verifications are yes/no questions, that
in only 56.6% of the cases users employ an explicit disconfirmation marker (e.g.,
“no”) to signal a problem. Notice, incidentally, that even if the information that
the system tries to verify is completely correct, 7.1% of the answers contains no
overt confirmation marker. Conversely, in 6.1% of the cases the user’s response
to a problematic explicit verification contains an overt confirmation marker,
which is not due to user acceptance of errors (those are outliers) but may be
attributed to acceptance of the correct parts of the system utterance (e.g.,

8

Table 5: Percentages of user utterances with a marked word order when there
are no communication problems and when there are communication problems,
as a function of verification strategy.

¬ problems problems

explicit 3.3% 4.4%
implicit 1.2% 26.9%

Table 6: Percentages of “yes” (right, sure, . . .), “no”(nope, wrong, . . .) and
other user answers when there are no communication problems and when there
are communication problems, as a function of verification strategy.

¬ problems problems

explicit yes 92.8% 6.1%
no 0% 56.6%
other 7.1% 37.1%

implicit yes 0% 0%
no 0% 15.4%
other 100% 84.6%

System: So you want to travel to Amsterdam Central Station? User: Yes,
but to Amsterdam Amstel). For implicit verification, it turns out that the
percentage of turns containing an explicit disconfirmation increases when there
are problems: 15.4% of the user’s utterances contains a “no”, even though the
implicit verification question is not a yes/no-question.

The final group of cues to be discussed is concerned with information units,
measured in terms of slots. Table 7 illustrates that subjects repeat and correct
more information when there are communication problems, and that they both
repeat and correct most following problematic implicit verifications. Explicit
verifications only occasionally lead users to provide new information, more or
less independent of the presence of problems. It is interesting to note that for
implicit verifications, on the other hand, the percentage of turns containing new
information drastically decreases in the case of problems.

In sum: following problematic verification questions, subjects more often
use negative features. In the case of explicit verifications, the differences tend
to be small, in the case of implicit verifications, however, there is a marked
increase in the usage of negative cues.

5 Precision and Recall

The next question is: which features of the user’s input provide useful infor-
mation for a spoken dialogue system in detecting errors? To determine this,

9

Table 7: Percentages of user utterances with repeated, corrected or new slots
when there are no communication problems and when there are communication
problems, as a function of verification strategy. Note that a single utterance
may contain repeated, corrected and new information at the same time, so that
the cells do not necessarily sum up to 100%.

¬ problems problems

explicit repeated 8.5% 23.9%
corrected 0% 72.6%
new 11.4% 12.4%

implicit repeated 2.4% 61%
corrected 0% 92.3%
new 53.6% 36.5%

precision and recall measures (commonly used in Information Retrieval) can be
used. Precision is defined as the number of hits (or true positives) divided by
the number of items the system selected. Recall is defined as the number of
hits divided by the number of items the system should have selected. In terms
of error detection, precision is a measure of the proportion of detected errors
that the system got right, and recall is a measure of the proportion of the errors
that the system detected. Obviously, a dialogue system would be perfectly able
to detect errors on the basis of a user’s signal if it has full precision and total
recall.

Table 8 contains the precision and recall results for the negative cues dis-
cussed in the previous section.7 Unsurprisingly, following an explicit verification
the single best cue for spotting errors is the absence of a confirmation (c), with
a precision of .88 and a recall of .94, while following an implicit verification the
overall most informative cue is a non-zero number of corrections (g), yielding
a precision of 1 and a recall of .92. Note also that, following an implicit ver-
ification, the conditions a (number of words > 8), b (disconfirmation) and d
(marked word order) all have a high precision (thus, are good cues for spot-
ting errors); unfortunately they also have a relatively low recall (due to their
infrequency).

Of course, paying attention to ‘go back’ signals is only one side of the coin.
For many applications it is also of interest to keep track of the ‘go on’ signals.
The question then is: which cue(s) provide useful information in determining
that the communication is running smoothly? Table 9 contains the precision
and recall results for both explicit and implicit verification for single conditions
derived from the positive cues discussed in section 3.1. In some sense, Table
9 can be read as the mirror image of Table 8. In particular, there is one
condition for each validation strategy with a very high precision and recall: this

7In the case of scalar cues (such as length of user utterance) only the condition with the
optimal trade-off between precision and recall is listed (in this case, number of words is greater
than 8).

10

Table 8: Precision and recall measures for negative (problem signalling) cues
derived from users’ reactions to explicit and implicit verification question.

explicit implicit
condition precision recall precision recall

a number of words > 8 .73 .10 .86 .23
b disconfirmation 1.0 .57 1.0 .15
c no confirmation .88 .94 .24 1.0
d marked word order .42 .04 .88 .27
e no answer 1.0 .03 .50 .10
f repeated slots > 0 .60 .24 .89 .61
g corrected slots > 0 1.0 .73 1.0 .92
h new slots = 0 .35 .88 .31 .64

Table 9: Precision and recall measures for positive (non-problem signalling)
cues derived from users’ reactions to explicit and implicit verification question.

explicit implicit
condition precision recall precision recall

a number of words < 6 .69 .97 .94 .87
b confirmation .97 .93 0.0 0.0
c no disconfirmation .81 1.0 .79 1.0
d unmarked word order .65 .97 .81 .99
e answer .65 1.0 .76 .97
f repeated slots = 0 .69 .91 .89 .98
g corrected slots = 0 .87 1.0 .98 1.0
h new slots > 0 .63 .11 .82 .54

is b (confirmation) for explicit verification and g (no corrections) for implicit
verification.

6 Memory-based error spotting

In the previous section we have seen that various cues, even in isolation, are
relatively good signals of the presence or absence of errors. However, for these
results to be practically useful, we need to be able to spot errors ‘on-line’ and
with a very high accuracy (number of correct decisions): it would probably be
bad practice to change the dialogue strategy (for instance, from implicit to ex-
plicit verification) when the system mistakenly believes that an error occurred.
An increase in accuracy of error spotting can only be obtained by looking at
combinations of cues. To study to what extent the cues discussed above are
beneficial for ‘on-line’ spotting of errors, some experiments with memory-based
learning techniques were carried out.

11

Given our current purposes (error-spotting) there is no knock-down argu-
ment in favor of any of the available automatic learning techniques. We opted
for memory-based machine learning since it is fast and, by the very nature of
its best guess approach, well adapted to deal with noisy, incomplete or even
inconsistent data (see Aha, Kibler and Albert, 1991). It is not our purpose to
argue that memory-based learning techniques work better for spotting errors
than other techniques. Rather we want to show that applying these techniques
to the hand-annotated data analysed above, it is possible to spot errors auto-
matically and with a high accuracy.

Memory-based learning techniques can be characterized by the fact that
they store a representation of some set of training data in memory, and classify
new instances by looking for the most similar instance(s) in memory. In the
current context an instance is the representation of a question-answer pair using
a vector of 13 feature value pairs. Of the 13 features, four represent properties of
the system’s question (the kind of verification strategy employed, the presence
or absence of default assumptions, the number of information slots the system
tries to verify, and whether the system utterance contains one or more errors),
the nine other features represent properties of the user’s reply. These are the
eight features studied in the previous section plus a feature marking whether
the user response is an outlier or not (see section 2).8 From a system perspective
there is no such thing as an outlier: every input the user gives has to be taken
into account. Therefore we carried out the experiments on the entire set of 487
utterances (including the 44 outliers) on the understanding that when the user
explicitly accepts an error, we treat this as a case in which no error occurred.

Various experiments were carried out, each time training on 486 cases and
testing on the remaining one (“leave one out”). The category to be predicted
during the test phase is whether or not the system utterance contained an
error, on the basis of features of the system’s verification question and the
user’s response. We use the basic overlap metric (a.k.a. Hamming distance,
Manhattan metric, city-block distance or L1 metric, see e.g., Daelemans, Zavrel,
van der Sloot and van den Bosch, 2000) in (1) in which ∆(X, Y) is the distance
between patterns X and Y (both consisting of n features) and δ is the distance
between the features. If X is the test-case, the ∆ measure determines which
group k of cases Y in memory is the most similar to X. The most frequent
value for the relevant category in k is the predicted value for X. Since some
features are more important than others, a weighting function wi is used. In
sum, the weighted distance between vectors X and Y of length n is determined
by the following equation, where δ(xi, yi) gives a point-wise distance between
features which is 1 if xi 6= yi and 0 otherwise.

∆(X, Y) =
n∑

i=1

wi δ(xi, yi) (1)

For the actual experiments we used the ib1-ig algorithm (Aha, Kibler and Al-
bert, 1991), as implemented in the TiMBL software package, version 3 (Daele-

8The outlier-feature was added to check whether outlier-hood mattered during learning,
which turned out to be not the case.

12

Table 10: Percentages correct classifications (problems/no problems) obtained
using leave-one-out on tokens with the ib1-gr algorithm

Features Correct classifications
all features 96.92%
confirm + correct 96.10%
correct 90.35%
confirm 82.96%
majority class baseline 68.17%

mans, Zavrel, van der Sloot and van den Bosch, 2000). ib1-gr is an instance-
based learning with gain ratio (GR) as weighting function. The gain ratio for a
feature i is derived from the information gain for that particular feature, com-
puted by looking at the difference in uncertainty (entropy) for situations with
and without feature i. A consequence of this measure is that features which
have a minority of infrequent but highly informative values, and a majority of
uninformative values (such as marked versus unmarked word order), tend to
have low information gain, and thus mostly play a minor role in classification.
Moreover, the information gain metric has a tendency to overestimate the ben-
efits of features with a large number of values. As an extreme case, consider a
feature with unique values (for the current domain, an utterance identification
number between 1 and 487, say). Such a feature will have a maximal infor-
mation gain, but is useless for value prediction of new cases. The gain ratio
metric normalizes the information gain in this respect (for further details, see
Daelemans et al., 2000).

Using the ib1-gr algorithm, four experiments were carried out, in which
the number of features stored in memory was varied. Table 10 displays the
results.9 The baseline strategy is always guessing that there are no problems,
which would be correct for 332 of the 487 cases. Thus, the majority class
baseline accounts for 68.17% of the cases. All experiments went well above this
level, the best results being obtained using all features with nearly 97% correct
categorizations. In the data under consideration, the features with the highest
gain ratio by far were ‘confirm’ (whether or not the user’s utterance contains
an explicit confirmation marker) and ‘correct’ (the number of slots the user
corrects). This means that these features play first fiddle when all features are
considered. Looking only at these features leads to a slightly lower percentage
of correct predictions (although we should be careful to draw conclusions from
that, given the relatively small amount of data). Interestingly, the two features
only perform well in combination; in isolation their respective performances are
much lower.

9To avoid a possible a confusion: the results are not partitioned with respect to the kind
of verification question, but that does not mean that the kind of verification plays no role.
After all, the kind of system verification question is one the 4 system features and thus it is
taken into account by the learning algorithm.

13

7 Discussion

The current article describes an explorative study into the usefulness of a va-
riety of cues which, in addition to the more classical confidence scores, may
be beneficial for error detection in spoken human-machine interactions. First
a descriptive analysis was performed on the basis of a corpus of 120 human-
machine dialogues. It turned out that subjects overall use the negative cues (‘go
back’) from Table 1 more often when the preceding system utterance contains
a problem, whereas the positive cues (‘go on’) are more often used in response
to unproblematic system utterances. This trend is particularly clear when the
system employs an implicit verification strategy. In general, it takes a lot of
effort to correct implicit verification questions. Second, some of the isolated
cues have relatively good predictive capacity (in terms of precision and recall)
to signal errors. Finally, memory-based learning techniques show that it is
possible to automatically decide, with a high accuracy, whether or not the pre-
ceding system utterance contained an error. The best results were obtained by
training on all features. In general it turned out that training on combinations
of features yields better results than training on single features.

It has to be kept in mind that the results of the machine learning experi-
ments were obtained using a relatively small, hand-annotated set of data. Con-
sequently the results should be interpreted as providing a kind of topline, in-
dicating the best performance a spoken dialogue system may hope to achieve
for automatic on-line error detection using the features described here. But,
before this topline is reached, the considerable gap has to be bridged between
the hand-annotated data used in these experiments and the raw data coming
out of a speech recognition engine. It is expected that it will be quite difficult
to extract certain feature values automatically from a word graph (e.g., marked
word-order). However, we conjecture that other and more important features
can be extracted from the word graph automatically, provided that the pre-
ceding system utterance is taken into account (of course, the system has direct
access to these). In fact, recent work of van den Bosch, Krahmer and Swerts
(2000) indeed suggests that this the case. Van den Bosch, Krahmer and Swerts
describe a number of machine learning experiments, performed with ib1-ig as
well as with ripper (Cohen, 1996), on a variety of features available in any
spoken dialogue system. The best results were obtained with the types of the
six most recent system questions and the lexical information from the two most
recent word graphs (corresponding to the two most recent user answers). On
the basis of these features, ripper was able to detect communication problems
with a 90% accuracy. In the end, we believe that the best results for on-line er-
ror detection will be obtained by a combination of factors: the history of system
questions, lexical information derived from the word graph, but also acoustic
confidence scores and prosodic information. The usefulness of the last item
for error detections is investigated in Krahmer, Swerts, Theune and Weegels
(2000). That article is in many ways a companion to the current one, for in-
stance, because it is based on the same corpus as this article. Krahmer et al.
(2000) found that if the preceding system utterance contained a problem, the
user’s utterance often contains a high (H%) boundary tone, a long duration,

14

a high pitch (in terms of F0), and a relatively long delay (the time between
the end of the system question and the beginning of the user’s answer). An
additional perception study was carried out to test whether these features have
‘cue-value,’ and it was indeed found that subjects are able to decide on the basis
of prosody alone whether the preceding system utterance contained a problem
or not.

We contend that the findings described in this article generalize to other
systems. Support for this is found, for instance, in Swerts, Hirschberg and Lit-
man (2000). One of the findings from their study of American English human-
machine dialogues is that utterances following speech recognition errors can be
reliably distinguished from ‘normal’ utterances using a set of automatically ob-
tained utterance characteristics (both prosodic and otherwise). Of course, we
have only looked at communication problems due to speech recognition errors
or incorrect default assumptions. While these errors are certainly the most
frequently encountered in practical spoken dialogue systems (see e.g., Oviatt et
al., 1998, den Os et al., 1999), they are not the only source of communication
problems (see, e.g., Dybkjær et al., 1998). What speech recognition errors and
incorrect default assumptions have in common is that they result in a state
where the system’s beliefs are inconsistent with the user’s intentions (the user
intends to go to Reuver while the system appears to ‘believe’ that he/she wants
to go to Utrecht CS). As a result, the cues discussed in this paper seem to corre-
spond to ‘corrections’. It is an interesting empirical question whether problems
which do not call for a correction (such as ambiguous system prompts, which
we did not encounter in our corpus, by the way) come with different cues.

In the remainder of this section we want to describe two examples of how
an on-line, quantitive error detection method along the lines advocated here,
may be used by the dialogue manager to adapt its strategy to the current state
of the dialogue. First, in the introduction, it was noted that neither implicit
nor explicit verification is by itself a satisfactory solution for dealing with the
uncertainties in human-machine dialogue. An attractive compromise would
be to use implicit verification when the user sends ‘go on’ signals, switch to
explicit verification when errors are detected (thus, for instance, it would have
been better to pose S3 of the example dialogue in section 1 in the form of an
explicit verification) and back again when the dialogue is on the right track. In
this way, the dialogue manager is capable of adapting to the current state of
affairs (cf. also Veldhuijzen van Zanten, 1999, Litman and Pan, 1999). A second
example situation in which it might pay off to look at positive and negative
cues is the following. Levow (1998) found that the probability of experiencing
a recognition error after a correct recognition is 16%, but immediately after
an incorrect recognition it is 44%. This increase is probably caused by the
fact that speakers use hyperarticulate speech when they notice that the system
had a problem recognizing their previous utterance. One can imagine a system
using two recognizers, one trained on normal speech and one on hyperarticulate
speech. If post-processing would reveal that the current user utterance is a likely
indicator of problems, then the system could decide to focus on the recognition
results delivered by the engine trained on hyperarticulate speech. Whether such
a strategy is feasible given the current state of technology (and whether it is at

15

all possible to develop an efficient recognizer tuned for hyperarticulate speech)
is still an open question. In any case, such applications trade on the assumption
that errors can be spotted automatically and accurately.

How does all this relate to current practice in spoken dialogue system de-
sign? Some current dialogue systems use a combination of explicit and implicit
verification, where the choice of verification strategy is determined by acoustic
confidence scores (e.g., Sturm, den Os and Boves, 1999). Given that currently
used acoustic confidence scores are not fully reliable (see section 1), it seems
worthwhile to employ user feedback to verification utterances as an additional
source of information. It is also relatively common practice to backtrack if the
user disconfirms verified information. An example of this is S6 in the example
dialogue discussed in the introduction. While this is a reasonable strategy in
general (due to the hyperarticulation effects it is often better to just start anew
rather than repeatedly try to solve errors), it is also a pity that the system in
this example had finally managed to collect all but one of the relevant pieces
of information and then was forced to throw away the results. However, using
the combined findings of this article and Krahmer et al. (2000), an alternative
suggests itself: the speaker uses various cues to signal a communication prob-
lem, and, moreover, the word “Reuver” is typically associated with a narrow
focussed pitch accent. This would provide the dialogue manager with more
fine grained information and makes it possible to decide upon a more suitable
follow-up question (one specifically focussing on the arrival station). Another
common strategy that current spoken dialogue systems often employ is repeat-
ing the question when the user failed to provide an answer. The following
excerpt from one of the dialogues we studied is an example:

S1: When do you want to travel?
U1: On the first day of Christmas.
S2: What time do you want to travel on July 12?
U2: (silent)
S3: Sorry, I did not understand you. What time do you want to travel

on July 12?
etc.

Here, as above, it seems that a better choice would have been to switch from
implicit to explicit verification after U2.

In sum, we claim that it is beneficial to pay attention to the cues users ac-
tually employ when they are confronted with communication problems. Paying
attention to these cues paves the way for principled decisions about follow-up
actions in the dialogue. In particular, paying attention to combinations of cues
will enable a substantial improvement of the somewhat crude techniques which
form current practice (such as backtracking after a disconfirmation, simply re-
peating the question when the user fails to provide an answer or sticking to
implicit verification questions when the user clearly has difficulty answering
these). This article outlines a possible approach to spotting communication
errors. It is worth stressing that the data for an error analysis can be ob-
tained automatically as a side effect of evaluating the prototype of your spoken
dialogue system.

16

Acknowledgments The experiments with memory-based learning techniques
described in section 6 were carried out with the help of Antal van den Bosch.
Thanks are also due to Bob Carpenter for singling out an annoying error in an
earlier version of this paper (presented at EUROSPEECH 1999 in Budapest),
and to the three anonymous referees for various useful comments. The authors
are mentioned in alphabetical order. Weegels and Theune were supported by
the Priority Programme Language and Speech Technology (TST), sponsored
by NWO (The Netherlands Organization for Scientific Research). Swerts is
also affiliated with the FWO - Flanders. Krahmer was partly supported by the
project LE-1 2277 (VODIS).

References

Aha, D., Kibler, D. & Albert, M. (1991). Instance-based learning techniques.
Machine Learning, 6 : 37-66.

van den Bosch, A., Krahmer, E. & Swerts, M. (2000). Detecting problem-
atic turns in human-machine interactions: Rule-induction versus memory-
based learning approaches. Submitted .

Bouwman, A., Sturm, J. & Boves, L. (1999). Incorporating confidence mea-
sures in the Dutch train timetable information system developed in the
Arise project. Proceedings International Conference on Acoustics, Speech,
and Signal Processing (ICASSP) (pp. 493-496). Phoenix, AZ, Vol. 1.

Clark, H. & Schaeffer, E. (1989). Contributing to Discourse, Cognitive Science,
13 :259-294.

Cohen, W. (1996). Learning trees and rules with set-valued features. Proceed-
ings 13th National Conference on Artificial Intelligence (AAAI).

Daelemans, W., Zavrel, J., van der Sloot, K. & van den Bosch, A. (2000).
TiMBL: Tilburg Memory-Based Learner, version 3.0, reference guide,
ILK Technical Report 00-01, http://ilk.kub.nl/∼ilk/papers/ilk0001.ps.gz.

Dybkjær, L., Bernsen, N. & Dybkjær, H. (1998). A methodology for diagnos-
tic evaluation of spoken human-machine dialogue. International Journal
Human-Computer Studies, 48 :605-625.

Hirschberg, J., Litman, D. & Swerts, M. (1999). Prosodic cues to recognition
errors. Proceedings of the 1999 International Workshop on Automatic
Speech Recognition and Understanding (ASRU) (pp. 349-352). Keystone,
CO, December 1999.

Hockey, B., Rossen-Knill, D., Spejewski, B., Stone, M. & Isard, S. (1997). Can
you predict answers to y/n questions? Yes, no and stuff. Proceedings of
Eurospeech’97 (pp. 2267-2270). ESCA, Rhodes, Greece.

17

Krahmer, E., Swerts, M., Theune, M. & Weegels, M. (2000). The dual of
denial: Two uses of disconfirmation in dialogue and their prosodic corre-
lates. Speech Communication, to appear.

Levow, G.A. (1998), Characterizing and Recognizing Spoken Corrections in
Human-Computer Dialogue. Proceedings of the 36th Annual Meeting
of Association for Computational Linguistics and the 17th International
Conference on Computational Linguistics (COLING-ACL) (pp. 736-742).
August 10-14, Montreal, Canada.

Litman, D. & Pan, S. (1999). Empirically evaluating an adaptable spoken
dialogue system. Proceedings of the 7th International Conference on User
Modelling (UM)

den Os, E., Boves, L., Lamel, L. & Baggia, P. (1999). Overview of the ARISE
project. Proceedings of Eurospeech’99 (pp. 1527-1530). ESCA, Budapest,
Hungary.

Oviatt, S., Bernard, J. & Levow, G.A. (1998). Linguistic adaptations during
spoken and multimodal error resolution. Language and Speech. Special
issue on Prosody and Conversation, 41 (3-4), 419-422.

Reeves, B. & Nass, C., (1996). The media equation: How people treat comput-
ers, television, and new media like real people and places. CSLI Publica-
tions/Cambridge University Press, Stanford/Cambridge.

Sturm, J., den Os, E. & Boves, L. (1999). Dialogue management in the Dutch
ARISE train timetable information system. Proceedings of Eurospeech’99
(pp. 1419-1422). ESCA, Budapest, Hungary.

Swerts M., Koiso, H., Shimojima, A. & Katagiri, Y. (1998), On different func-
tions of repetitive utterances. Proceedings of the International Conference
on Spoken Language Processing (ICSLP) (pp. 1287-1290). Sydney, Aus-
tralia.

Swerts, M., Litman, D. & Hirschberg, J. (2000). Corrections in spoken di-
alogue systems. Proceedings of the International Conference on Spoken
Language Processing (ICSLP 2000) (pp. 615-618). Volume II, Beijing,
China.

Taylor, P., King, S., Isard, S. & Wright, H. (1998). Intonation and dialogue
context as constraints for speech recognition. Language and Speech. Spe-
cial issue on Prosody and Conversation, 41 (3-4): 493-512.

Traum, D.R. (1994), A Computational Theory of Grounding in Natural Lan-
guage Conversation, Ph.D. dissertation, University of Rochester, Rochester.

Veldhuijzen van Zanten, G. (1999). User modeling in adaptive dialogue man-
agement. Proceedings of Eurospeech’99 (pp. 1183-1186). ESCA, Bu-
dapest, Hungary.

18

Weegels, M. (2000), Users’ Conceptions of Voice-Operated Information Ser-
vices, International Journal of Speech Technology , 3(2):75-82.

19

