22 research outputs found

    Physical Characterization of Inclusion Complexes of Triphenyl Phosphate and Cyclodextrins in Solution.

    No full text
    The goal of this work is to provide physical insights into the formation and stability of inclusion complexes (ICs) in aqueous solution between cyclodextrins (CDs) and a common flame retardant, triphenyl phosphate (TPP). Quantum chemistry calculations reveal the possible energetically favorable geometries of TPP in their 1:1 IC form with α-, β-, and γ-CDs as well as their associated complexation, conformational, and interaction energies. High-resolution mass spectrometry (MS) and tandem MS were used with electrospray ionization to study the soluble ICs formed between TPP and CDs. Successful formation of TPP ICs with both β- and γ-CD in solution was detected in the ratio of 1:1 using high-resolution MS in the positive ion mode. Collision-induced dissociation confirmed the formation of TPP ICs with β- and γ-CDs by generating two product ions, TPP and β- or γ-CD, in both cases. Although quantum chemistry calculations suggest that IC formation with α-CD is energetically possible, an IC with α-CD is not observed in aqueous solution using MS, which aligns with what we also previously observed in the solid state. Since TPP forms stable ICs with β- and γ-CDs both in the solid state and in solution suggests that complexation could be a safer alternative than applying TPP directly to a substrate. In addition, complexation with CDs in solution also opens up new processing methods to create flame-retardant fabrics and foams with TPP

    Cytochrome P450 and flavin-containing monooxygenase families: Age-dependent differences in expression and functional activity

    Get PDF
    Background Age-dependent differences in pharmacokinetics exist for metabolically cleared medications. Differential contributions in the cytochrome P450 3A (CYP3A), CYP2C, and flavin-containing monooxygenases (FMOs) families have an important role in the metabolic clearance of a large number of drugs administered to children. Methods Unlike previous semiquantitative characterization of age-dependent changes in the expression of genes and proteins (western blot analysis), this study quantifies both gene and absolute protein expression in the same fetal, pediatric, and adult hepatic tissue. Expression was then correlated with the corresponding functional activities in the same samples. Results CYP3A and FMO families showed a distinct switch from fetal (CYP3A7 and FMO1) to adult isoforms (CYP3A4 and FMO3) at birth, whereas CYP2C9 showed a linear maturation from birth into adulthood. In contrast, analysis of CYP2C19 revealed higher expression and catalytic efficiency in pediatric samples compared with that in fetal and adult samples. Further, CYP3A and FMO enzymes exhibited an unexpectedly higher functional activity in fetal samples not entirely explained by protein expression. Conclusion These surprising findings suggest that CYP and FMO enzymes may encounter development-related differences in their microenvironments that can influence the enzyme activity in addition to protein expression levels
    corecore