41 research outputs found

    Quantitative and spatial analysis of CD8+/PD-1 tumor-infiltrating lymphocytes as a predictive biomarker for clinical response of melanoma in-transit metastases to topical immunotherapy

    Get PDF
    Background: Melanoma in-transit metastases (ITMs) are a challenge to treat and associated with systemic disease and poor prognosis. Topical diphencyprone (DPCP), a potent contact sensitizer, is an established treatment for melanoma ITMs. This exploratory study investigated the utility of BRAF mutation status, CD8, PD-1, PD-L1, and TILs distribution as biomarkers for response of ITMs to topical immunotherapy (DPCP).  Methods: The ITM deposits of 40 patients treated with DPCP were subjected to biomarker analysis for BRAF status, CD8 and PD-1 expression on tumor-infiltrating lymphocytes (TILs), and tumor PD-L1 expression. Response to DPCP and overall survival (OS) were compared by biomarker status.  Results: After 12 weeks, 10 patients (25%) had a complete response, 12 patients (30%) had a partial response, and 18 patients (45%) had no response. No significant association was found between any individual biomarker and response to DPCP or OS. The BRAF mutation rate was 25% (10/40). All the patients with a complete response had BRAF wild-type tumor. Peritumoral CD8+ T-cells were associated with complete response (P = 0.041). Both CD8+ and PD-1 expressions were highly correlated (P < 0.0001), and the highest levels of PD-1 expression were detected at the peritumoral interface (P = 0.0004). Only two cases were PD-L1-positive, and both had a complete response to DPCP (P = 0.043).  Conclusion: Patients who have BRAF wild-type tumor are more likely to experience a complete response to DPCP. Peritumoral TILs and PD-1 expressions may predict a better response to DPCP. Expression of PD-L1 may be associated with a complete response to DPCP. A larger prospective study is required

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Targeting endoplasmic reticulum signaling pathways in cancer.

    No full text
    The endoplasmic reticulum (ER) orchestrates the production of membrane-bound and secreted proteins. However, its capacity to process the synthesis and folding of protein is limited. Protein overload and the accumulation of misfolded proteins in the ER trigger an adaptive response known as the ER-stress response that is mediated by specific ER-anchored signaling pathways. This response regulates cell functions aimed at restoring cellular homeostasis or at promoting apoptosis of irreparably damaged cells. Activation or deregulation of ER-signaling pathways has been associated with various diseases including cancer. Here we discuss how tumors engage ER-signaling pathways to promote tumorigenesis and how manipulation of this process by anticancer drugs may contribute to cancer treatment
    corecore