50 research outputs found

    The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer

    Get PDF
    © Evans et al. Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-metabolising pathways. Its aberrant activity has been reported in a number of cancers, although relatively few studies have explored a role for Nrf2 in colorectal cancer (CRC). This study assessed the expression of Nrf2 in patient CRC tissues and explored the effect of Nrf2 modulation alone, or in combination with irinotecan, in human (HCT116) and murine (CT26) cell lines in vitro and in an orthotopic syngeneic mouse model utilising bioluminescent imaging. Using a tissue microarray, Nrf2 was found to be overexpressed (p < 0.01) in primary CRC and metastatic tissue relative to normal colon, with a positive correlation between Nrf2 expression in matched primary and metastatic samples. In vitro experiments in CRC cell lines revealed that Nrf2 siRNA and brusatol, which is known to inhibit Nrf2, decreased viability and sensitised cells to irinotecan toxicity. Furthermore, brusatol effectively abrogated CRC tumour growth in subcutaneously and orthotopicallyallografted mice, resulting in an average 8-fold reduction in luminescence at the study end-point (p=0.02). Our results highlight Nrf2 as a promising drug target in the treatment of CRC

    A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity.

    Get PDF
    Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment

    Lung glutathione adaptive responses to cigarette smoke exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking tobacco is a leading cause of chronic obstructive pulmonary disease (COPD), but although the majority of COPD cases can be directly related to smoking, only a quarter of smokers actually develop the disease. A potential reason for the disparity between smoking and COPD may involve an individual's ability to mount a protective adaptive response to cigarette smoke (CS). Glutathione (GSH) is highly concentrated in the lung epithelial lining fluid (ELF) and protects against many inhaled oxidants. The changes in GSH that occur with CS are not well investigated; therefore the GSH adaptive response that occurs with a commonly utilized CS exposure was examined in mice.</p> <p>Methods</p> <p>Mice were exposed to CS for 5 h after which they were rested in filtered air for up to 16 h. GSH levels were measured in the ELF, bronchoalveolar lavage cells, plasma, and tissues. GSH synthesis was assessed by measuring γ-glutamylcysteine ligase (GCL) activity in lung and liver tissue.</p> <p>Results</p> <p>GSH levels in the ELF, plasma, and liver were decreased by as much as 50% during the 5 h CS exposure period whereas the lung GSH levels were unchanged. Next, the time course of rebound in GSH levels after the CS exposure was examined. CS exposure initially decreased ELF GSH levels by 50% but within 2 h GSH levels rebound to about 3 times basal levels and peaked at 16 h with a 6-fold increase and over repeat exposures were maintained at a 3-fold elevation for up to 2 months. Similar changes were observed in tissue GCL activity which is the rate limiting step in GSH synthesis. Furthermore, elevation in ELF GSH levels was not arbitrary since the CS induced GSH adaptive response after a 3d exposure period prevented GSH levels from dropping below basal levels.</p> <p>Conclusions</p> <p>CS exposures evoke a powerful GSH adaptive response in the lung and systemically. These data suggests there may be a sensor that sets the ELF GSH adaptive response to prevent GSH levels from dipping below basal levels. Factors that disrupt GSH adaptive responses may contribute to the pathophysiology of COPD.</p

    Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients

    Get PDF
    Aim The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. Materials & Methods Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients treated with CBZ as monotherapy and 100 age and sex matched healthy controls. Plasma concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC-UV-DAD and adjusted for CBZ dosage/kg of body weight. Results The presence of the SCN1A IVS5-91G>A variant allele is associated with increased epilepsy susceptibility. Furthermore, carriers of the SCN1A IVS5-91G>A variant or of EPHX1 c.337T>C variant presented significantly lower levels of plasma CBZ compared to carriers of the common alleles (0.71±0.28 vs 1.11±0.69 μg/mL per mg/Kg for SCN1A IVS5-91 AA vs GG and 0.76±0.16 vs 0.94±0.49 μg/mL per mg/Kg for EPHX1 c.337 CC vs TT; PG showed a reduced microsomal epoxide hydrolase activity as reflected by a significantly decreased ratio of CBZD to CBZ (0.13±0.08 to 0.26±0.17, pT SNP and SCN1A 3148A>G variants were not associated with significant changes in CBZ pharmacokinetic. Patients resistant to CBZ treatment showed increased dosage of CBZ (657±285 vs 489±231 mg/day; P<0.001) but also increased plasma levels of CBZ (9.84±4.37 vs 7.41±3.43 μg/mL; P<0.001) compared to patients responsive to CBZ treatment. CBZ resistance was not related to any of the SNPs investigated. Conclusions The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition. CBZ plasma levels are not an indicator of resistance to the therapy

    Genomic and oncoproteomic advances in detection and treatment of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers.</p> <p>Methods</p> <p>An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library.</p> <p>Results</p> <p>Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment.</p> <p>Conclusion</p> <p>If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.</p

    Exome sequencing of synchronously resected primary colorectal tumours and colorectal liver metastases to inform oncosurgical management

    No full text
    Background: Next generation sequencing technology has facilitated mapping of the colorectal cancer genotype and furthered our understanding of metastogenesis. The aim of this study was to investigate for conserved and different mutations in the exomes of synchronously resected primary colorectal tumour and liver metastases. This information could potentially be utilised to guide the treatment of advanced disease with the help of biological information from the primary tumour. Methods: We performed exome sequencing of synchronously resected primary colorectal cancer and colorectal liver metastases as well as normal colonic mucosa and liver parenchyma, from four patients who had received neo-adjuvant chemotherapy, at a depth of 50X using the Ion Proton platform. Raw data was mapped to the reference genome prior to variant calling, annotation and downstream analysis. Results: Exome sequencing identified 585 non-synonymous missense single nucleotide variants (SNVs), of which 215 (36.8%) were unique to the primary tumour, 226 (38.6%) unique to the metastasis and 81 (13.8%) present in patient matched pairs. SNVs identified in the ErbB pathway appear to be concordant between primary and metastatic tumours. Conclusion: Only 13.8% of the metastatic exome can be predicted by the genotype of the primary tumour. We have demonstrated concordance of a number of SNVs in the ErbB pathway, which may inform selection of therapeutic agents in advanced colorectal cancer

    Proteomic profiling of rectal cancer reveals acid ceramidase is implicated in radiation response

    No full text
    Background Neoadjuvant chemoradiotherapy (CRT) is used in locally advanced rectal cancer when tumours threaten the circumferential resection margin, with varying response to treatment. This experimental study aimed to identify significantly differentially expressed proteins between patients responding and not responding to CRT, and to validate any proteins of interest. Methods Mass spectrometry (with isobaric tagging for relative quantification) analysis of rectal cancers pre- and post-CRT, and at resection. Validation of proteins of interest was performed by assessing tissue microarray (TMA) immunohistochemistry expression in a further 111 patients with rectal cancer. Results Proteomic data are available via ProteomeXchange with identifier PXD008436. Reduced abundance of contributing peptide ions for acid ceramidase (AC) (log fold change −1.526, p = 1.17E−02) was observed in CRT responders. Differential expression of AC was confirmed upon analysis of the TMAs. Cancer site expression of AC in stromal cells from post-CRT resection specimens was observed to be relatively low in pathological complete response (p = 0.003), and relatively high with no response to CRT (p = 0.017). Conclusion AC may be implicated in the response of rectal cancer to CRT. We propose its further assessment as a novel potential biomarker and therapeutic target. Significance There is a need for biomarkers to guide the use of chemoradiotherapy in rectal cancer, as none are in routine clinical use. We have determined acid ceramidase may have a role in radiation response, based on novel proteomic profiling and validation in a wider dataset using tissue microarrays. The ability to predict or improve response would positively select those patients who will derive benefit, prevent delays in the local and systemic management of disease in non-responders, and reduce morbidity associated with chemoradiotherapy
    corecore