47 research outputs found

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed

    Oxytocin attenuates feelings of hostility depending on emotional context and individuals' characteristics

    Get PDF
    In humans, oxytocin (OT) enhances prosocial behaviour. However, it is still unclear how the prosocial effects of OT are modulated by emotional features and/or individuals' characteristics. In a placebo-controlled design, we tested 20 healthy male volunteers to investigate these behavioural and neurophysiological modulations using magnetoencephalography. As an index of the individuals' characteristics, we used the empathy quotient (EQ), the autism spectrum quotient (AQ), and the systemising quotient (SQ). Only during the perception of another person's angry face was a higher SQ a significant predictor of OT-induced prosocial change, both in the behavioural and neurophysiological indicators. In addition, a lower EQ was only a significant predictor of OT-induced prosocial changes in the neurophysiological indicators during the perception of angry faces. Both on the behavioural and the neurophysiological level, the effects of OT were specific for anger and correlated with a higher SQ

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Gene therapy for primary immune deficiencies: a Canadian perspective

    Full text link
    The use of gene therapy (GT) for the treatment of primary immune deficiencies (PID) including severe combined immune deficiency (SCID) has progressed significantly in the recent years. In particular, long-term studies have shown that adenosine deaminase (ADA) gene delivery into ADA-deficient hematopoietic stem cells that are then transplanted into the patients corrects the abnormal function of the ADA enzyme, which leads to immune reconstitution. In contrast, the outcome was disappointing for patients with X-linked SCID, Wiskott–Aldrich syndrome and chronic granulomatous disease who received GT followed by autologous gene corrected transplantations, as many developed hematological malignancies. The malignancies were attributed to the predilection of the viruses used for gene delivery to integrated at oncogenic areas. The availability of safer and more efficient self-inactivating lentiviruses for gene delivery has reignited the interest in GT for many PID that are now in various stages of pre-clinical studies and clinical trials. Moreover, advances in early diagnosis of PID and gene editing technology coupled with enhanced abilities to generate and manipulate stem cells ex vivo are expected to further contribute to the benefit of GT for PID. Here we review the past, the present and the future of GT for PID, with particular emphasis on the Canadian perspective

    Resting state magnetoencephalography functional connectivity in traumatic brain injury

    No full text
    OBJECT: Traumatic brain injury (TBI) is one of the leading causes of morbidity worldwide. One mechanism by which blunt head trauma may disrupt normal cognition and behavior is through alteration of functional connectivity between brain regions. In this pilot study, the authors applied a rapid automated resting state magnetoencephalography (MEG) imaging technique suitable for routine clinical use to test the hypothesis that there is decreased functional connectivity in patients with TBI compared with matched controls, even in cases of mild TBI. Furthermore, they posit that these abnormal reductions in MEG functional connectivity can be detected even in TBI patients without specific evidence of traumatic lesions on 3-T MR images. Finally, they hypothesize that the reductions of functional connectivity can improve over time across serial MEG scans during recovery from TBI. METHODS: Magnetoencephalography maps of functional connectivity in the alpha (8- to 12-Hz) band from 21 patients who sustained a TBI were compared with those from 18 age- and sex-matched controls. Regions of altered functional connectivity in each patient were detected in automated fashion through atlas-based registration to the control database. The extent of reduced functional connectivity in the patient group was tested for correlations with clinical characteristics of the injury as well as with findings on 3-T MRI. Finally, the authors compared initial connectivity maps with 2-year follow-up functional connectivity in a subgroup of 5 patients with TBI. RESULTS: Fourteen male and 7 female patients (17–53 years old, median 29 years) were enrolled. By Glasgow Coma Scale (GCS) criteria, 11 patients had mild, 1 had moderate, and 3 had severe TBI, and 6 had no GCS score recorded. On 3-T MRI, 16 patients had abnormal findings attributable to the trauma and 5 had findings in the normal range. As a group, the patients with TBI had significantly lower functional connectivity than controls (p < 0.01). Three of the 5 patients with normal findings on 3-T MRI showed regions of abnormally reduced MEG functional connectivity. No significant correlations were seen between extent of functional disconnection and injury severity or posttraumatic symptoms (p > 0.05). In the subgroup undergoing 2-year follow-up, the second MEG scan demonstrated a significantly lower percentage of voxels with decreased connectivity (p < 0.05) than the initial MEG scan. CONCLUSIONS: A rapid automated resting-state MEG imaging technique demonstrates abnormally decreased functional connectivity that may persist for years after TBI, including cases classified as “mild” by GCS criteria. Disrupted MEG connectivity can be detected even in some patients with normal findings on 3-T MRI. Analysis of follow-up MEG scans in a subgroup of patients shows that, over time, the abnormally reduced connectivity can improve, suggesting neuroplasticity during the recovery from TBI. Resting state MEG deserves further investigation as a prognostic and predictive biomarker for TBI

    Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells

    No full text
    DNA-dependent protein kinase (DNA-PK) has an important role in the repair of DNA damage and regulates the radiation sensitivity of glioblastoma cells. The VCP (valosine-containing protein), a chaperone protein that regulates ubiquitin-dependent protein degradation, is phosphorylated by DNA-PK and recruited to DNA double-strand break sites to regulate DNA damage repair. However, it is not clear whether VCP is involved in DNA-PKcs (DNA-PK catalytic subunit) degradation or whether it regulates the radiosensitivity of glioblastoma. Our data demonstrated that DNA-PKcs was ubiquitinated and bound to VCP. VCP knockdown resulted in the accumulation of the DNA-PKcs protein in glioblastoma cells, and the proteasome inhibitor MG132 synergised this increase. As expected, this increase promoted the efficiency of DNA repair in several glioblastoma cell lines; in turn, this enhanced activity decreased the radiation sensitivity and prolonged the survival fraction of glioblastoma cells in vitro. Moreover, the VCP knockdown in glioblastoma cells reduced the survival time of the xenografted mice with radiation treatment relative to the control xenografted glioblastoma mice. In addition, the VCP protein was also downregulated in ∼25% of GBM tissues from patients (WHO, grade IV astrocytoma), and the VCP protein level was correlated with patient survival (R(2)=0.5222, P<0.05). These findings demonstrated that VCP regulates DNA-PKcs degradation and increases the sensitivity of GBM cells to radiation
    corecore