131 research outputs found

    Systemic Lupus Erythematosus in Dogs and Cats

    Get PDF
    Systemic lupus erythematosus (SLE) is an autoimmune disease affecting multiple systems and has been reported in humans, dogs, and cats. Although known since the 19th century in humans, SLE was not recognized in the dog until 1965. Since the first case report, a number of cases have been documented in the dog. On the other hand, the firs case of SLE to be suspected in a cat was in 1971, and only five further cases have appeared in the literature

    Characterization of reagent pencils for deposition of reagents onto paper-based microfluidic devices

    Get PDF
    Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs) with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol

    Reagent pencils: A new technique for solvent-free deposition of reagents onto paper-based microfluidic devices

    Get PDF
    Custom-made pencils containing reagents dispersed in a solid matrix were developed to enable rapid and solvent-free deposition of reagents onto membrane-based fluidic devices. The technique is as simple as drawing with the reagent pencils on a device. When aqueous samples are added to the device, the reagents dissolve from the pencil matrix and become available to react with analytes in the sample. Colorimetric glucose assays conducted on devices prepared using reagent pencils had comparable accuracy and precision to assays conducted on conventional devices prepared with reagents deposited from solution. Most importantly, sensitive reagents, such as enzymes, are stable in the pencils under ambient conditions, and no significant decrease in the activity of the enzyme horseradish peroxidase stored in a pencil was observed after 63 days. Reagent pencils offer a new option for preparing and customizing diagnostic tests at the point of care without the need for specialized equipment

    Trace constituents in the middle atmosphere by high resolution UV spectroscopy

    Get PDF
    An array of 5 autonomous spectrometers, the imaging spectrometric observatory covers a broad wavelength range (approximately 200 to 12,000 A), has a resolution selectable down to approximately 0.5 A, and a dynamic range of approximately 10 to the 7th power and is designed to select experiment measurement sequences by software control. Because current models of thermospheric ionic processes produce too much N2(+) ionization, the N2(+) reaction with O and the chemistry of metastable (N(+) ions and of O2(+) ions are objects of study on Spacelab 1

    Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres

    Full text link
    A thermochemical-hydrodynamic model of the production of trace species by electrical discharges has been used to estimate the rates of fixation of C and N by lightning in the primitive atmosphere. Calculations for various possible mixtures of CH 4 , CO 2 , N 2 , H 2 , and H 2 O reveal that the prime species produced were probably HCN and NO and that the key parameter determining the rates of fixation was the ratio of C atoms to O atoms in the atmosphere. Atmospheres with C more abundant than O have large HCN fixation rates, in excess of 10 17 molecules J −1 , but small NO yields. However, when O is more abundant than C, the NO fixation rate approaches 10 17 molecules J −1 while the HCN yield is small. The implications for the evolution of life are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43346/1/11084_2004_Article_BF00931483.pd
    • …
    corecore