124 research outputs found

    Paragenesis of multiple platinum-group mineral populations in Shetland ophiolite chromitite: 3D X-ray tomography and in situ Os isotopes

    Get PDF
    Chromitite from the Harold’s Grave locality in the mantle section of the Shetland ophiolite complex is extremely enriched in Ru, Os and Ir, at µg/g concentrations. High-resolution X-ray computed tomography on micro-cores from these chromitites was used to determine the location, size, distribution and morphology of the platinum-group minerals (PGM). There are five generations of PGM in these chromitites. Small (average 5 µm in equivalent sphere diameter, ESD) euhedral laurites, often with Os-Ir alloys, are totally enclosed in the chromite and are likely to have formed first by direct crystallisation from the magma as the chromite crystallised. Also within the chromitite there are clusters of larger (50 µm ESD) aligned elongate crystals of Pt-, Rh-, Ir-, Os- and Ru-bearing PGM that have different orientations in different chromite crystals. These may have formed either by exsolution, or by preferential nucleation of PGMs in boundary layers around particular growing chromite grains. Thirdly there is a generation of large (100 µm ESD) composite Os-Ir-Ru-rich PGM that are all interstitial to the chromite grains and sometimes form in clusters. It is proposed that Os, Ir and Ru in this generation were concentrated in base metal sulfide droplets that were then re-dissolved into a later sulfide-undersaturated magma, leaving PGM interstitial to the chromite grains. Fourthly there is a group of almost spherical large (80 µm ESD) laurites, hosting minor Os-Ir-Ru-rich PGM that form on the edge or enclosed in chromite grains occurring in a sheet crosscutting a chromitite layer. These may be hosted in an annealed late syn- or post magmatic fracture. Finally a few of the PGM have been deformed in localised shear zones through the chromitites. The vast majority of the PGM – including small PGM enclosed within chromite, larger interstitial PGM and elongate aligned PGM – have Os isotope compositions that give Re-depletion model ages approximately equal to the age of the ophiolite at ∼492 Ma. A number of other PGM – not confined to a single textural group – fall to more or less radiogenic values, with four PGM giving anomalously unradiogenic Os corresponding to an older age of ∼1050 Ma. The 187Os/188Os isotopic ratios for PGM from Cliff and Quoys, from the same ophiolite section, are somewhat more radiogenic than those at Harold’s Grave. This may be due to a distinct mantle source history or possibly the assimilation of radiogenic crustal Os

    Phytohemagglutinin-Induced Mitotic Index in Blood Lymphocytes: A Potential Biomarker for Breast Cancer Risk

    Get PDF
    Background Cell proliferation is associated with the pathogenesis of cancer because it provides opportunities for accumulating genetic mutations. However, biomarkers of cell proliferation in response to environmental stimuli have not been adequately explored for breast cancer risk. Methods In a case-control study of 200 breast cancer patients and 360 healthy controls, we investigated the association between phytohemagglutinin (PHA)-induced mitotic index in blood lymphocyte and breast cancer risk. Results Having high mitotic index (>3.19%) was associated with an increased risk of breast cancer, with adjusted odds ratios (95% confidence interval) of 1.54 (1.03–2.30) and 2.03 (1.18–3.57) for all women and post-menopausal women, respectively. Mitotic index was correlated with some reproductive factors and body mass index in controls. Conclusions Our data suggest increased PHA-induced mitotic index in blood lymphocytes is associated with an increased breast cancer risk and that this association may be modulated by reproductive and other hormones

    Down-Modulation of P210 bcr/abl

    No full text

    Myelofibrosis 2012: it’s complicated

    No full text
    corecore