95 research outputs found

    Spatial distribution of soil water repellency in a grassland located in Lithuania

    Get PDF
    Soil water repellency (SWR) it is recognized to be very heterogeneous in time in space and depends on soil type, climate, land use, vegetation and season (Doerr et al., 2002). It prevents or reduces water infiltration, with important impacts on soil hydrology, influencing the mobilization and transport of substances into the soil profile. The reduced infiltration increases surface runoff and soil erosion. SWR reduce also the seed emergency and plant growth due the reduced amount of water in the root zone. Positive aspects of SWR are the increase of soil aggregate stability, organic carbon sequestration and reduction of water evaporation (Mataix-Solera and Doerr, 2004; Diehl, 2013). SWR depends on the soil aggregate size. In fire affected areas it was founded that SWR was more persistent in small size aggregates (Mataix-Solera and Doerr, 2004; Jordan et al., 2011). However, little information is available about SWR spatial distribution according to soil aggregate size. The aim of this work is study the spatial distribution of SWR in fine earth (<2 mm) and different aggregate sizes, 2-1 mm, 1-0.5 mm, 0.5-0.25 mm and <0.25 mm. The studied area is located near Vilnius (Lithuania) at 54 42’ N, 25 08 E, 158 masl. A plot with 400 m2 (20 x 20 m with 5 m space between sampling points) and 25 soil samples were collected in the top soil (0-5 cm) and taken to the laboratory. Previously to SWR assessment, the samples were air dried. The persistence of SWR was analysed according to the Water Drop Penetration Method, which involves placing three drops of distilled water onto the soil surface and registering the time in seconds (s) required for the drop complete penetration (Wessel, 1988). Data did not respected Gaussian distribution, thus in order to meet normality requirements it was log-normal transformed. Spatial interpolations were carried out using Ordinary Kriging. The results shown that SWR was on average in fine earth 2.88 s (Coeficient of variation % (CV%)=44.62), 2-1mm 1.73 s (CV%=45.10), 1-0.5 mm 2.02 s (CV%=93.75), 0.5-0.25 mm 3.12 s (CV%=233.68) and in <0.25 mm 15.54 mm (CV%=240.74). This suggests that SWR persistence and CV% is higher in small size aggregates than in the coarser aggregate sizes. The interpolated maps showed that in fine earth SWR was higher in the western part of the studied plot and lower in the central area. In the 2-1 mm aggregate size it was higher in the southwest and lower at north and northwest area. In the 1-0.5 mm aggregate size it was lower in the central area and higher in the southwest. In the 0.5-0.25 mm aggregate size it was higher in the west part and lower in the north of the plot and. In the <0.25 mm no specific pattern was identified and the SWR was heterogeneously distributed. This suggests that the spatial distribution of SWR is very different according to the aggregate size. Future studies are needed in order to identify the causes and consequences of such dynamic. Acknowledgements The authors appreciated the support of the project “Litfire”, Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Counci

    Soil erosion and carbon budget in Mediterranean vineyards

    Get PDF
    Vineyards of Mediterranean regions are characterized by low organic matter level and high sediment and nutrient erosion rates, which are the main causes of soil degradation and low sustainability of vine production. Alternative soil management - cover crops, green manure of prune residues, buffer strip- has widely applied as soil management practices to reduce soil degradation processes. However, the effectiveness of innovative soil management should be evaluated in relation to climatic and soil conditions. Many studies have been carried out in Sicilian vineyards in order to improve the sustainability with particular attention to: reduction of erosion, increase of soil organic matter, managing of nitrogen content and prune residue input. Besides the ecosystem service and its related economic aspects of the different soil management has been evaluated to analyze the wine growers and researchers demands. The aim of this work is to describe the state of art of scientific results on different soil management in Sicilian vineyards in the last 15 years, highlighting criticisms and lack of knowledge

    Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula.

    Get PDF
    Abstract Agriculture is known to commonly cause soil degradation. In the Mediterranean, soil erosion is widespread due to the millennia-old farming, and new drip-irrigated plantations on slopes, such as the citrus ones, accelerate the process of soil degradation. Until now, the published data about soil erosion in citrus orchards is based on short-term measurements. Long-term soil erosion measurements are needed to assess the sustainability of drip-irrigated citrus production and to design new strategies to control high soil erosion rates. The objective of this study is to assess long-term soil erosion rates in citrus plantations and report the changes in soil bulk density as indicators of land degradation. We applied ISUM (Improved Stock-Unearthing Method) to 67 paired trees in an inter-row of 134 m (802 m2 plot) with 4080 measurements to determine the changes in soil topography from the plantation (2007) till 2020. Soil core samples (469) were collected (0–6 cm depth) to determine the soil bulk density at the time of plantation (2007) and in 2020. The results demonstrate an increase in soil bulk density from 1.05 g cm−3 to 1.33 g cm−3. Changes in soil bulk density were higher in the center of the row as a result of compaction due to passing machinery. Soil erosion was calculated to be 180 Mg ha−1 y−1 due to a mean soil lowering of 1.5 cm yearly. The highest soil losses were found in the center of the inter-row and the lowest underneath the trees. The extreme soil erosion rates measured in new drip-irrigated citrus plantations are due to soil lowering in the center of the inter-row and in the lower inter-row position where the incision reached 80 cm in 13 years. The whole field showed a lowering of the soil topography due to extreme soil erosion and no net sedimentation within the plantation. The results show the urgent need for soil erosion control strategies to avoid soil degradation, loss of crop production, and damages to off-site infrastructures

    Carbon dynamics of soil organic matter in bulk soil and aggregate fraction during secondary succession in a Mediterranean environment.

    Get PDF
    Clarifying which factors cause an increase or decrease in soil organic carbon (SOC) after agricultural abandonment requires integration of data on the temporal dynamics of the plant community and SOC. A chronosequence of abandoned vineyards was studied on a volcanic island (Pantelleria, Italy). Vegetation in the abandoned fields was initially dominated by annual and perennial herbs, then by Hyparrhenia hirta (L.) Stapf, and finally by woody communities. As a consequence, the dominant photosynthetic pathway changed from C3 to C4 and then back to C3. Conversion of a plant community dominated by one photosynthetic pathway to another changes the 13C/12C ratio of inputs to SOC. Using the time since abandonment and the shift in belowground δ13C of SOC relative to the aboveground δ13C plant community, we estimated C3-C and C4-C changes during secondary succession. SOC content (g kg− 1) increased linearly (R2 = 0.89 and 0.73 for 0–15 and 15–30 cm soil depth) with the age of abandonment, increasing from 12 g kg− 1 in cultivated vineyards to as high as 26 g kg− 1 in the last stage of the succession. δ13C increased in the bulk soil and its three aggregate fractions (&gt; 250, 250–25, and &lt; 25 μm) during succession, but the effect of soil depth and its interaction with succession age were significant only for soil aggregate fractions. Polynomial curves described the change in δ13C over the chronosequence for both depths. δ13C in the bulk soil had increased from − 28‰ to − 24‰ by 35 years after abandonment for both depths but then decreased to − 26‰ at 60 years after abandonment (corresponding with maturity of the woody plant community). Overall, the results indicate that abandoned vineyards on volcanic soil in a semi-arid environment are C sinks and that C storage in these soils is closely related to plant succession

    Effect of Standard Disk Plough on Soil Translocation in Sloping Sicilian Vineyards

    Get PDF
    Tillage is the main force of soil redistribution in agricultural land use and has been seen as more critical than water erosion. This study aims to evaluate the effect of tillage with standard disk in vineyards. A representative study area with grapevines was selected, and 39 inter-rows were selected to test the effect of slope and forward speed. In each inter-row, a strip of soil was collected, and mixed with 2 kg of coloured sand used as a tracer, then replaced in the strip, and shallow soil tillage was performed by means of a standard disk plough. Three soil subsamples were collected along the slope every 0.30 m from the coloured strip and the sand tracer was separated from the soil and weighed. The results show that the mean soil translocation distance ranged from 0.73 to 1.14 m along the upslope direction, and from 0.32 to 0.84 m along the downslope direction. The net translocation was −0.33 ± 0.12 m which indicate an upslope soil movement. Mean translocation distance was not significantly affected by the considered forward speeds. These results demonstrate that tillage can reallocate soil upslope and open new insights into the use of disk plough as sustainable management in vineyards

    Long-term Cropping Systems and Tillage Management Effects on Soil Organic Carbon Stock and Steady State Level of C Sequestration Rates in a Semiarid Environment

    Get PDF
    A calcareous and clayey xeric Chromic Haploxerepts of a long-term (19 years) experimental site in Sicily (Italy) with different land use management and cropping systems were sampled (0-15 cm depth) to study their effect on soil aggregate stability and associated organic carbon (SOC). The experimental site had three tillage managements (no till [NT], dual-layer [DL] and conventional tillage [CT]) and two cropping systems (durum wheat mono-cropping [W] and durum wheat/faba bean rotation [WB]). The whole site covered an area of 4440 m2 with individual plots having 370 m2. The soil was ploughed during the experiment. Samples (2 – 4 kg each) were taken before and after the experiment. The annually sequestered SOC with W was 2.75 times higher than with WB and higher SOC concentrations were measured. The NT management system was the most effective in SOC sequestration whereas with DL no C was sequestered. The differences in SOC concentrations between NT and CT were surprisingly small. Cumulative C input of all cropping and tillage systems and the annually sequestered SOC indicated that a steady state occurred at a sequestration rate of 7.4 Mg C ha-1 yr-1. Independent of the cropping systems, most of the SOC was stored in the silt and clay fraction. This fraction had a high N content which is typical for organic matter interacting strongly with minerals. Macro-aggregates (&gt; 250µm) were influenced by the treatments whereas the finest fractions were not. DL reduced the SOC in macro-aggregates while NT and CT gave rise to much higher SOC contents

    The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    Get PDF
    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered soil. The results show that the soil erosion is reduced by 10 on straw mulch covered soils and by 4 on chipped branches covered soil. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research

    Long-Term Durum Wheat-Based Cropping Systems Result in the Rapid Saturation of Soil Carbon in the Mediterranean Semi-arid Environment

    Get PDF
    Climate, soil physical-chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12-year experiment, six semi-arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47MgC ha-1y-1 in Ws plots to 0.66MgCha-1y-1 in W plots but was negative (-0.06MgCha-1y-1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7Mgha-1, which was reached with a cumulative C input of 15Mgha-1

    Understanding the role of soil erosion on co2-c loss using 13c isotopic signatures in abandoned Mediterranean agricultural land

    Get PDF
    Understanding soil water erosion processes is essential to evaluate the redistribution of soil organic carbon (SOC) within a landscape and is fundamental to assess the role of soil erosion in the global carbon (C) budget. The main aim of this study was to estimate the C redistribution and losses using 13C natural abundance. Carbon losses in soil sediment, dissolved organic carbon (DOC) and CO2 emission were determined. Four bounded parallel plots were installed on a 10% slope. In the upper part of the plots, C3soil was replaced with C4soil. The SOC and δ13C were measured after 145.2 mm rainfall in the upper (2 m far from C4strip), middle (4 m far from C4strip) lower (6 m far from C4strip) trams of the plot and in the sediments collected in the Gerlach collector at the lower part of the plot. A laboratory incubation experiment was performed to evaluate the CO2 emission rate of soils in each area. OC was mainly lost in the sediments as 2.08 g−2 of C was lost after 145.2 mm rainfall. DOC losses were only 5.61% of off-site OC loss. Three months after the beginning of the experiment, 15.90% of SOC in the upper tram of the plot had a C4 origin. The C4-SOC content decreased along the 6 m length of the plot, and in the sediments collected by the Gerlach collector. CO2 emission rate was high in the upper plot tram due to the high SOC content. The discrimination of CO2 in C3 and C4 portion permitted to increase our level of understanding on the stability of SOC and its resilience to decomposition. The transport of sediments along the plot increased SOC mineralization by 43%. Our study underlined the impact of rainfall in C losses in soil and water in abandoned Mediterranean agriculture fields and the consequent implications on the C balance
    corecore