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ABSTRACT

Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon
(SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and
approaches a SOC saturation level. In a 12-year experiment, six semi-arid cropping systems characterized by different rates of C input to soil
were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil
aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the
soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem
clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in
Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47MgC ha�1 y�1 in Ws plots to
0.66MgCha�1 y�1 in W plots but was negative (�0.06MgCha�1 y�1) in Wfall plots. Increases in SOC were related to C input up to a
SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value
for the experimental soil was 57.7Mg ha�1, which was reached with a cumulative C input of 15Mg ha�1. Copyright © 2015 John Wiley
& Sons, Ltd.
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INTRODUCTION

Land degradation is related to the soil quality and health
(Brevik et al., 2015) and he degradation of the soil system
will change the hydrological, biological, and geochemical
cycles in the Earth and the service the soils offers to the hu-
man societies (Keesstra et al., 2012; Berendse et al., 2015).
Within the Earth System cycles the carbon is one that is
more influenced by the human use of the land (de Graaff
et al., 2015; Köchy et al., 2015; Ping et al., 2015). Agricul-
ture and intensive tillage have caused a 30 to 50% decrease
in the carbon (C) content of many soils that have been culti-
vated for more than 100 years (Schlesinger, 1986; Lal &
Kimble, 1997; Smith et al., 2000; de Moraes Sá et al.,
2013). Given the ecological and agronomic importance of
soil organic matter (Brevik et al., 2015; de Graaff et al.,
2015; Vanlauwe et al., 2015), a main objective for the sus-
tainable use of soil resources should be an increase in the
pool of soil organic C (SOC) (Paustian et al., 1997).
The variables that influence C sequestration and conse-

quently the SOC pool include climate, soil physical and
chemical characteristics, land management, and the input
and decomposition of plant residues, including leaves, roots,
and root exudates. (Cely et al., 2014; Parras-Alcántara &
Lozano-García, 2014; Srinivasarao et al., 2014; Weyers &
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Spokas, 2014; Kaleeem Abbasi et al., 2015). The SOC pool
can generally be increased by agricultural management that
increases litter input and reduces tillage intensity (Bell
et al., 2003; Alvaro-Fuentes et al., 2009a; Carr et al.,
2015). With respect to the size of the SOC pool, the quantity
and quality of crop residues are especially important.
In soil subjected to intensive tillage in warmer or semi-

arid regions, residues are readily decomposed (Rasmussen
et al., 1998), and belowground C inputs from roots are un-
able to maintain or increase soil C levels (Barbera et al.,
2012). The input and sequestration of C in soil can of course
be affected by the crop. The C sequestration rate (Csr), for
example, was greater with cereals than legumes in a study
by Curtin et al. (2000). Incorporating straw from cereals into
soil seems to be an effective way to increase SOC, particu-
larly in dryland soils (Lugato et al., 2006; Barbera et al.,
2012). In a study in China, a relatively high percentage
(16.3%) of the cereal straw returned to soil was retained in
the SOC pool (Lu et al., 2009). At the global scale, the an-
nual SOC sequestration by straw return in agricultural eco-
systems was estimated to be 0.124PgC, about 1.4% of
global fossil-fuel emissions (Le Quere et al., 2009). This is
similar to the estimated C sequestration potential resulting
from the adoption of conservation tillage and crop residue
management (0.150–0.175PgCy�1; Lal & Bruce, 1999).
The potentially significant contribution of this residual straw
to the reduction in greenhouse gas (GHG) emissions and the
mitigation of global warming, however, has been largely
ignored.
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As described in the theory of soil C saturation, there may
be a limit to how much C can be stored in soil relative to the
C input rate (Gao et al., 2013). The C saturation limit and
other variables including SOC turnover rates and stability
are greatly affected by the degree of soil aggregation (Stew-
art et al., 2008). Soil aggregation can physically protect or-
ganic matter against rapid decomposition (Pulleman &
Marinissen, 2004) and is strongly influenced by agricultural
management intensity (Blanco-Canqui & Lal, 2008; Bono
et al., 2008; Alvaro-Fuentes et al., 2009b; Blanco-Canqui
et al., 2009; Simon et al., 2009; Debasish-Saha et al.,
2014). SOC and soil aggregation enhance each other. SOC
binds with mineral particles to form soil aggregates, and as
noted earlier, soil aggregates can reduce the rate of decom-
position of the SOC within (Tisdall & Oades, 1982; Gupta
& Germida, 1988; Elliott et al., 1993; Beare et al., 1994a,
1994b; Li et al., 2009).
SOC is typically reduced by tillage because tillage breaks

soil aggregates apart and exposes the SOC within, while
SOC is typically increased by the input of organic residues
(Tisdall & Oades, 1982; Elliott et al., 1993; Ouedraogo
et al., 2005). In any case, whether the soil C saturation limit
can be reached as a function of agricultural management in
semi-arid environments and specifically in Vertisols has
not been studied and therefore remains unknown. However,
SOC concentrations in clay soils in Sicily are usually not
lower than 15 g kg�1, even though the high temperatures
and rainfall support high decomposition rates; these clay
soils seem to have a potential low limit for C storage
(Stewart et al., 2008).
Soils in semi-arid areas generally have low SOC levels,

and it is unclear to what degree the C stock in these soils
can be increased by a change in land use or by improved soil
management. In these soils, changes in C stocks are slow be-
cause of the high decomposition rate and high inputs of C do
not typically result in proportional increases in SOC seques-
tration (Al-Kaisi & Grote, 2007).
This paper describes a long-term experiment that com-

pared six cropping systems in a semi-arid environment in
Sicily (Italy) characterized by different rates of C input.
The main objective was to verify the limits and potentiality
of cropping system to increase SOC stock. Soil C saturation
levels were determined and the time required to reach the
soil C saturation level as a function of cropping system
was estimated.
igure 1. Photograph of one replicate block of the experiment. Ws = durum
heat monocropping with return of aboveground residues to the soil;
= durum wheat monocropping without return of aboveground residues
the soil; Wfall = durum wheat/fallow without return of aboveground res-
ues to the soil; Wbc = durumwheat/berseem clover without return of above-
round residues to the soil; Wbf = durum wheat/barley/faba bean without
eturn of aboveground residues to the soil; and WWhh= durum wheat/
edysarum coronarium without return of aboveground residues to the soil.
his figure is available in colour online at wileyonlinelibrary.com/journal/ldr.
MATERIAL AND METHODS

Study Area and Experimental Design

The 12-year experiment was conducted in Sparacia, which is
located in the southern part of Sicily (37°37′74″N, 13°42′
53″E; elevation 400m). Mean annual precipitation 529mm
and mean annual air temperature 21.4 max and 9.0 min on
a 50-year average. Soils of the test area are Vertic Cambisols
according to World Reference Base (2014) or Vertic
Haploxerepts according to Soil Taxonomy system (Soil
Copyright © 2015 John Wiley & Sons, Ltd.
Survey Staff, 2014). These are moderately deep soils that
evolved on a gentle slope (6%) and are sub-alkaline
(pH=7.7) and clayey (57.7% clay, 16.2% silt, 26.1% sand).
The average CaCO3 content of the soil is 2.8%. The SOC
and N contents at the beginning of the experiment were
16.4 and 1.2 g kg�1 respectively. Beginning in 1998, the fol-
lowing six rainfed cropping systems typical of semi-arid en-
vironments were compared: (1) durum wheat monocropping
with return of aboveground residues to soil (Ws); (2) durum
wheat monocropping (W); (3) durum wheat followed by fal-
low (Wfall) (2-years rotation); (4) durum wheat rotated with
berseem clover (Wbc) (2 -ears rotation); (5) durum wheat ro-
tated with barley and faba bean (Wbf) (3-years rotation); (6)
and durum wheat (2 years) rotated with Hedysarum
coronarium (WWhh) (2 years) (Figure 1, Table I). Above-
ground residues were not incorporated into the soil except
for Ws cropping system. The systems were compared in a
randomized complete block design with three blocks or rep-
lications, covering an area of 6500m2 and a plot size of
250m2. Details on cropping system management are re-
ported in Table I.

Soil Sampling and Fractionation

After wheat was harvested in June of each year, soil samples
were collected (0–30 cm depth) using a cylinder (10 cm di-
ameter), air-dried, and passed through a 2-mm sieve. To re-
duce the error tolerance to less than ±5%, about 2 to 4 kg of
soil (Hitz et al., 2002) was collected per sample. Without
prior chemical dispersion, three wet aggregate-size fractions
were obtained by mechanically shaking 50 g of air-dried soil
sample on a column with sieves of >75μm(macro-aggre-
gates), 75–25μm(micro-aggregates), and <25μm (silt and
clay fraction); an AS 200 Sieve shaker (RETSCH
analytical-203mm diameter sieves) (amplitude of 2 cm, fre-
quency of 1.6Hz and a water flux of 2 lmin�1) was used.
The relative weight distribution of the soil fractions and their
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Table I. Cropping systems management characteristics in a 12-year experiment in Sicily concerning C input and C storage in soil

Cropping
systema Cropb

Fertilization

Seeds
(n m�2)

Row
wide
(cm)

Soil
preparation

Weeds
control

N (kg ha�1)
(sowing)

N (kg ha�1)
(five leaves

stage)
P2O5 (kg ha

�1)
(sowing)

W W 90 60 100 350 25 CTc Here

W 60 60 100 350 25 CT Her
Ws W 90 60 100 350 25 CT Her

W 60 60 100 350 25 CT Her
Wbc bc � - 60 1200 16 STd -

W 40 40 100 350 25 CT Her
Wfall fall mm - - - - - -

W 40 40 100 350 25 CT Her
Wbf b 50 50 90 300 25 ST Her

f - - 60 40 75 CT Mecf

W 40 40 100 350 25 CT Her
WWhh h min nim 60 700 50 ST -

h min num - — ° — d
W 30 30 100 350 25 CT Her
W 60 60 100 350 25 CT Her

aCropping systems are described in the legend for Figure 1 and in the text.
bW = durum wheat, Ws = durum wheat with straws return, bc = berseem clover, fall = fallow; b = barley; f = faba bean; h =Hedysarum coronarium.
cConventional tillage (CT) - ploughing (30 – 35 cm depth) and a surface tillage (5 cm depth);
dSurface tillage (ST) (5 cm depth);
ePre-planting glyphosate treatment;
fMechanical interow control at five leaves stage

Table II. Ratio of belowground residue biomass/aboveground res-
idue biomass (Krs) in the species used in the cropping systems and
biomass characteristics (ADF, acid detergent fibre; NDF, neutral
detergent fibre; and ADL, acid detergent lignin). Biomass ratios
are from the Intergovernmental Panel on Climate Change (2006,
Table 11.2) except for Faba bean and Hedysarium coronarium
(measured data)

Krs
ADF
(%)

NDF
(%)

ADL
(%)

Durum wheat (W) 0.20 48.2(3.5) 76.4(5.2) 7.0(0.3)
Faba bean (f) 0.40(0.05) 42.3(2.3) 53.7(3.2) 7.7(0.5)
Berseem clover (bc) 0.70 37.8(2.5) 54.3(4.0) 6.8(0.2)
Barley (b) 0.21 48.2(3.0) 76.4(3.8) 7.0(0.5)
Hedysarum c. (H) 0.12(0.07) 46.4(2.1) 63.0(2.5) 9.5(0.5)

Values in parenthesis indicate standard deviation.
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C content was measured. SOC was determined using the
Walkley and Black method (Walkley & Black, 1934).

Calculations

Annual aboveground biomass production was estimated
each year by weighing the plant biomass in 1m2 in each rep-
licate plot; the ratio aboveground/below biomass was deter-
mined for Faba bean and Hedysarum coronarium (ten
plants/plot). For the other species, data from other publica-
tions were used to determine the ratio of aboveground to be-
lowground biomass (Kong et al., 2005; Chung et al., 2008).
After harvest, all aboveground crop residues were removed
from the plot according to the farm practices of the area ex-
cept in Ws plots; that is, straw residues were returned to the
soil only in plots with durum wheat monocropping. Thus,
only the biomass of the roots was considered as C input
(Ci) to the soil except in the Ws plots, where straw was also
added. Ci was calculated according to Kong et al. (2005)
and Chung et al. (2008):

Ci Mgha�1
� � ¼ Krs*Above ground biomass Mgha�1

� �

*Root carbon content %ð Þ
(1)

Where: Krs is the ratio of belowground residue
mass/aboveground residue mass (Table II). For all species,
the root carbon content was assumed to be 43% of the dry
root biomass (Laudicina et al., 2014).
The cumulative C input (CCi) was calculated for each

cropping system by summing the C input for all years of
the experiment.
SOC stock (Mgha�1) in the 0–30 cm layer was calculated

using the equation:
Copyright © 2015 John Wiley & Sons, Ltd.
SOC Mg ha�1
� � ¼ SOC g kg�1

� �
* BD Mg m�3

� �
* d mð Þ=10

(2)

Where: SOC is soil organic C content, BD is the bulk den-
sity, and d is the thickness of the soil layer.
BD was calculated using the volume of the collected sam-

ples and the weight of the dry soil (Blake & Hartge, 1986).
The Csr (Mg�1 ha�1 y�1) was estimated for the topsoil by

the following equation (Kong et al., 2005):

Csr ¼ SOCt � SOC0ð Þ=y (3)

Where: SOCt and SOC0 are the stock of SOC at time t (2010)
and at the beginning of the experiment (1998) and y is the du-
ration of experiment. For determination of SOC0, the mean C
value of all of the plots at the beginning of the experiment
LAND DEGRADATION & DEVELOPMENT, 27: 612–619 (2016)
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was used because the variability of SOC was low at the start
(Rover & Kaiser, 1999; Kravchenko et al., 2006; de Oliveira
et al., 2015). Positive and negative values were considered as
SOC gains or losses for the cropping systems.
C sequestration efficiency (Cse) (%) was calculated by the

following equation.

Cse ¼ Csr=Ci*100 (4)

Where: Ci is the annual C input via straw return and roots
turnover (Mgha�1 y�1) and Csr is the SO Csr.
The potential C saturation deficit (SOCsat) was calculated

as follows:

SOCsat ¼ SOCsat<25μm þ SOC>25μm (5)

Where: SOCsat>25 μm is the C content (g kg�1) of coarser
soil particles >25μm (%), and SOCsat<25 μm is the potential
C saturation (g kg�1) of fine soil particles <25μm (%).
SOCsat<25 μm was calculated according to the equation of
Hassink (1997) (Equation 7):

SOCsat<25μm ¼ 1� SOCstart=Pc (6)

Where: SOCstart is the SOC content at the start of the exper-
iment and Pc is soil C protective capacity of <25μm parti-
cles. Pc was calculated as follows:

Pc ¼ 4:09þ 0:37*particles < 25 μm %ð Þ (7)

Statistical Analysis

The data for SOC content, aggregate size, and CCi were
evaluated by analysis of variance for a completely random-
ized block design. Differences between means were tested
with the LSD test at *P< 0.05. SPSS statistical software
was used.
RESULTS

SOC Response to Cumulative C Input (CCi)

The CCi values during the 12-year experiment ranged from
3.3MgCha�1 in Wfall plots to 35.5MgCha�1 in Ws plots
(Table III). In spite of the wide range of CCi values, the
Table III. Cumulative Carbon input (CCi), carbon sequestration rate (Csr
function of cropping system. Values are means of three replicates. Means
at p≤ 0.05 (LSD test)

Cropping
system

CCi (Mg C
ha�1)

Csr
(MgC ha 1 y�1) Bul

W 5.47ab 0.47b 18
Ws 35.5d 0.66b 19
Wbc 13.82c 0.56b 18
WFall 3.34a �0.06a 16
Wbf 10.31bc 0.49b 18
WWhh 9.46bc 0.53b 18
Average 12.99 0.44 18

Copyright © 2015 John Wiley & Sons, Ltd.
Csr was significantly different in only one of the six cropping
systems; that is, the Csr was significantly lower inWfall plots
than in the other five kinds of plots but did not differ among
Ws, W, Wbc, Wbf, and WWhh plots (Table III).
In the five cropping systems with positive Csrs, the rates

ranged from 0.47MgCha�1 y�1 in W plots to
0.66MgCha�1 y�1 in Ws plots. The negative rate in Wfall
plots (�0.06Mg Cha�1 y�1) was associated with a low
CCi value, a value that was apparently insufficient to bal-
ance the SOC reduction resulting from tillage and decompo-
sition during fallow soil management. Among the five
cropping systems with positive Csrs, Cse was highest in W
plots (8.7%), followed by WWhh (5.6%) and Wbf (4.7%)
plots. These findings indicate that the high values for Cse
were obtained in cropping systems with low CCi but high
neutral detergent fibre (NDF) content (such as in the W
cropping system) or in cropping systems with a high Ci from
legumes (WWhh and Wbf) (Figure 2, Table II).

SOC Stock in Soil Aggregates and in Bulk Soil

Among the soil aggregate fractions, the <25μm fraction
was the most abundant, followed by the 25–75μm fraction
and then by the >75–250μm fraction (Table IV). Among
cropping systems, the portion of the aggregates >75μm
tended to be smallest in Ws and Wbc plots (Table IV).
Regardless of cropping system, the SOC concentration

was highest in the <25μm aggregate fraction, followed by
the 25–75μm aggregate fraction and then by the >75μm
aggregate fraction (Table III). Regardless of cropping sys-
tem, the <25μm aggregate fraction had the greatest mass
among the aggregate fractions (Table IV). It follows that
most of the SOC in the soil was present in the finest fraction.
The concentration of SOC in the finest fraction tended to be
highest in WWhh plots followed by Ws plots and was low-
est in Wfall plots (Table III).
The low SOC concentration in Wfall plots was associated

with a low input of C and N (Table I) and with soil tillage.
The relatively high concentrations of SOC in the >75μm
aggregate fraction in W and Ws plots were perhaps because
of the high level of NDF in wheat residues (Table II), which
would reduce the decomposition rate.
) and SOC content of the bulk soil and aggregate-size fractions as a
in a column followed by a different letter are significantly different

SOC

(gC kg�1)

k soil >75μm 25-75μm <25μm

.30b 3.20d 3.6b 11.50b

.02c 3.20d 3.1a 12.70cd

.60c 2.30c 4.69e 11.70bc

.14a 2.00b 4.52de 9.50a

.40b 2.00b 4.28cd 12.10bc

.50b 1.00a 4.09c 13.40d

.20 2.28 4.05 11.82

LAND DEGRADATION & DEVELOPMENT, 27: 612–619 (2016)



Figure 2. Cumulative Carbon input (CCi) vs. carbon sequestration effi-
ciency (Cse) in the experiment (n = 15) (R2 = 0.62**). Values for the Wfall
cropping system were negative and are not included. This figure is available

in colour online at wileyonlinelibrary.com/journal/ldr.

Figure 3. Cumulative carbon input (CCi) vs. soil Organic Carbon (SOC) in
bulk soil for the six cropping systems (n = 18) (R2 = 0.40**). This figure is

available in colour online at wileyonlinelibrary.com/journal/ldr.
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Quantitative Analysis of the C Saturation Rate

SOC increased as C input increased but the relationship was
logarithmic rather than linear; that is, the rate of SOC in-
crease dropped as CCi increased and as SOC apparently
approached a saturation level (Figure 3). When calculated
according to Equations 5 and 6 and based on data from all
plots, the C saturation level was 57.7Mgha�1 (Figure 4A,
vertical black line). Likewise, SOC tended to plateau as
CCi increased to about 55 to 60Mgha�1 (Figure 3).
According to Figure 4A, the SOC saturation level was

reached with a CCi value of 15Mgha�1. As indicated by
the area between the red dotted line and black dotted line
in Figure 4A, C sequestration increased from 47.0 (the
SOC content at the start of the experiment) to 57.7Mgha�1

(the SOC saturation value). Relating CCi to SOC stock at
start of the experiment, calculated by exponential relation-
ship (Figure 4A), was 4.7Mgha�1 (red dotted line, Figure
4). The lowest CCi values corresponded to the lowest SOC
values (the area below the dotted red line in Figure 4A),
which occurred in the three Wfall plots. The CCi values that
exceeded 15Mgha�1 (the area above the black dotted lines
in Figure 4A and B) correspond to C inputs that did not in-
crease SOC because the SOC saturation level had been
reached. The C saturation deficit ranged between
0.6Mgha�1 in Ws and 9.3Mgha�1 in Wfall.
Based on Figure 4A, the CCi value needed to reach the

SOC saturation level was set at 15Mgha�1. Plots of CCi
Table IV. Effect of cropping system on the amount of soil aggre-
gates of different sizes. In the same column, means (n = 3) followed
by a different letter are significantly different at p ≤ 0.05 (LSD test)

Cropping
system

Aggregate size (g kg�1)

>75μm 25–75μm <25μm

W 107.0c 123.0ab 770.2b
Ws 91.0d 97.0c 811.2a
Wbc 99.0cd 134.0a 766.2bc
Wfall 123.7b 140.3a 735.7c
Wbf 138.0a 103.0c 758.2bc
WWhh 109.0c 109.0bc 781.2ab
Average 111.3 117.7 770.4

Copyright © 2015 John Wiley & Sons, Ltd.
against time (assuming that C input was linear over time) in-
dicated the time required for each cropping system to reach
the SOC saturation level (Figure 4B). Ws plots required only
5 years to reach the SOC saturation level, while the other
plots required more than 12 years to reach the saturation
level (Table V).

DISCUSSION

The C sequestration efficiencies in relation to C inputs were
lower in the current study of Sicilian rain-fed cropping sys-
tems than in studies for other cropping systems (Miglierina
et al., 2000; Bono et al., 2008; Simon et al., 2009) but were
comparable to those reported for Mediterranean semi-arid
agroecosystems (Alvaro-Fuentes et al., 2009c). The low an-
nual level of C sequestration in the current study was prob-
ably because of high rates of decomposition and low C
saturation deficits. For these reasons, the soil C sequestration
threshold was low (steady state); that is, increases in C input
did not greatly increase soil C accumulation because the C
was rapidly mineralized rather than being incorporated into
soil microaggregates (Six et al., 2002; Kong et al., 2005).
If saturation occurred, further incorporated SOC, would be
lost to erosion and mineralization processes.
The low saturation deficit found in our long-term study of

cropping systems in Sicily indicates that once the CCi
reaches a value of about 14Mgha�1, no additional C will
accumulate in the soil. These results, which are consistent
with the views of West & Six (2007) on C sequestration
and saturation, indicate that the quantity of C stored in
semi-arid Vertisols will reach a steady-state level in a rela-
tively short time. Our results confirmed that straw return is
an effective measure to quickly enhance SOC stock under
cropland. Liu et al. (2014) and West & Six (2007) estimated
that soil C saturation might occur over a period of 12 years
(straw return) and over 26 years (under intensive rotation)
respectively, both longer than that under Ws of this study
(5 years).
Several reports have indicated that soil C sequestration

can be increased by N fertilization and especially by the
planting of legumes (Paustian et al., 1992; Alvarez, 2005),
especially if most of the other residues added to the soil have
LAND DEGRADATION & DEVELOPMENT, 27: 612–619 (2016)



Figure 4. (A) Cumulative Carbon input (CCi) plotted against bulk Soil Organic Carbon (SOC) at the end of the experiment and (B) CCi versus the duration of
the experiment. Red bullets and green bullets indicate Ws and W cropping system respectively. In A the vertical solid line represents the SOC stock at the
saturation level (57.7Mg ha�1). In both A and B graphs, the horizontal black dotted line was drawn from the following equation: CCi = 0.0073e0.132(SOCsat)
where SOCsat refers to the SOC saturation level; the red dotted line indicates the CCi before the start of the experiment. In graph 4B each point of the con-
tinuous lines is the annual Carbon input (Ci) (Cci divided by number of years) multiplied for the years from the trial start. Red dotted lines are the projections
of the CCi toward hypothetical SOC saturation. In both graphs the green area represents the SOC saturation deficit. This figure is available in colour online at

wileyonlinelibrary.com/journal/ldr.
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a low C/N. Our results indicated that residue quality was less
important than residue quantity, perhaps because N was not
a limiting factor for C sequestration in the current study
(Barbera et al., 2012). In a similar semi-arid environment,
Laudicina et al. (2014) found that leguminous rotations
had more potential to enhance CO2 emissions than cereal
monocultures because of the higher quality of leguminous
residues compared with cereal residues
Additional research is needed to clarify how C seques-

tration in soil is affected by interactions among soil type,
residues quality, climate, and nitrogen fertilization. This
information would help policymakers identify land uses
that are responsible for long-term gains and losses in soil
organic C.
The soil C saturation level could probably be increased by

changing management; that is, by reducing tillage to limit
decomposition rates and by using irrigation to increase C in-
put rates and generally adopting management aimed to im-
prove macroaggregate stabilization. Such changes may be
difficult to achieve because climate limits the selection of
crops and because local and traditional agricultural practices
may be difficult to change. There are also economic chal-
lenges to adopting these changes (Alexander et al., 2015).
Still, farmers should be encouraged to increase or at least
maintain their soil C stocks. To do so, farmers will require
information on the C input levels required to increase or
maintain the soil C stock for their particular cropping sys-
tem. The current study has provided that information for ce-
real crops grown in the semi-arid Vertisols of Sicily.
Table V. Years required to reach the SOC saturation level for six
cropping systems. These estimates were based on the linear regres-
sions of CCi on time (Figure 4B)

Cropping system Regression slope Years

W 0.45 33
Ws 2.96 5
Wbc 1.15 13
Wfall 0.28 50
Wbf 0.86 17
WWhh 0.78 19

Copyright © 2015 John Wiley & Sons, Ltd.
CONCLUSION

Findings of this work showed that in a long-term experiment
in a semi-arid climate the wide range of CCi and the trial pe-
riod (12 years) dispelled any doubts about rapid steady state
or saturation achievement because of the relatively high car-
bon input in all cropping systems and the low efficiency in
term of SOC sequestration of the wheat fallow cropping sys-
tem. The recommended mean C sequestration period of
20 years for national GHG according to the IPCC Guidelines
(Houghton et al., 1997) are perhaps e suitable for most semi-
arid cropping systems but not for durum wheat
monocropping and fallow. Durum wheat cropping systems
showed high ability in C saturation achievement (five years)
only when supported by high C input return (Ws). Cropping
systems with leguminous rotation did not show the same
ability because of the low CCi and probably the faster resi-
dues decomposition because of high nitrogen input.
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